Courses
Autumn semester 2024
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. J. Ziegel)
- Mathematik IV: Statistik (Prof. N. Meinshausen)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistical Modelling (Dr. M. Kalisch)
- Statistik II (D-BIOL, D-HEST) (Dr. J. Dambon)
- Statistik II (Humanmedizin) (Dr. B. Ineichen)
- Stochastic Simulation (Dr. F. Sigrist)
- Student Seminar in Statistics: MCMC Sampling Algorithms in Bayesian Computation (Prof. Y. Chen)
- Using R for Data Analysis and Graphics (Part I) (Prof. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Prof. M. Mächler)
Spring semester 2024
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Computational Statistics (Prof. J. Peters)
- Student Seminar in Statistics: E-Values and Anytime-Valid Inference (Prof. Dr. Johanna Ziegel)
- Statistics Lab (Dr. M. Kalisch, Prof. M. Mächler, Dr. L. Meier, Dr. Fabio Sigrist)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (D-BAUG, Prof. Dr. P. Bühlmann)
Autumn semester 2023
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- High-Dimensional Statistics (Prof. P. Bühlmann)
- Mathematik IV: Statistik (Prof. N. Meinshausen)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistical Modelling (Dr. M. Kalisch)
- Statistik II (D-BIOL, D-HEST) (Dr. J. Dambon)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Bayesian Statistics (Dr. F. Sigrist)
- Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems (Prof. F. Balabdaoui)
- Using R for Data Analysis and Graphics (Part I) (Prof. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Prof. M. Mächler)
Spring semester 2023
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Computational Statistics (Prof. M. Mächler)
- Student Seminar in Statistics: Causality (Prof. P. Bühlmann, Prof. N. Meinshausen)
- Statistics Lab (Dr. M. Kalisch, Prof. M. Mächler, Dr. L. Meier, Prof. N. Meinshausen, Prof. em. Stahel)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2022
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- Mathematik IV: Statistik (Dr. J. Ernest)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistical Modelling (Prof. P. Bühlmann)
- Statistik II (D-BIOL, D-HEST) (Dr. J. Dambon)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Stochastic Simulation (Dr. F. Sigrist)
- Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems (Prof. F. Balabdaoui)
- Time Series Analysis (Prof. N. Meinshausen)
- Using R for Data Analysis and Graphics (Part I) (Prof. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Prof. M. Mächler)
Spring semester 2022
- Advanced Statistical Modelling: Mixed Models (Prof. M. Mächler)
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Computational Statistics (Prof. N. Meinshausen)
- Empirical Process Theory and Applications (Prof. S. van de Geer)
- Programming with R for Reproducible Research (Prof. M. Mächler)
- Student Seminar in Statistics: Causality (Prof. P. Bühlmann, Dr. M. Champion)
- Statistics Lab (Dr. M. Kalisch, Prof. M. Mächler, Dr. L. Meier, Prof. N. Meinshausen, Prof. em. Stahel)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2021
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Bayesian Statistics (Dr. F. Sigrist)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- High-Dimensional Statistics (Prof. P. Bühlmann)
- Mathematik IV: Statistik (Dr. J. Ernest)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistical Modelling (Dr. C. Heinze-Deml)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Student Seminar in Statistics: Inference in Some Non-Standard Regression Problems (Prof. F. Balabdaoui)
- Using R for Data Analysis and Graphics (Part I) (Prof. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Prof. M. Mächler)
Spring semester 2021
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Causality (Dr. C. Heinze-Deml)
- Computational Statistics (Prof. M. Mächler)
- Empirical Process Theory and Applications (Prof. S. van de Geer)
- On Hypothesis Testing (Prof. F. Balabdaoui)
- Programming with R for Reproducible Research (Prof. M. Mächler)
- Student Seminar in Statistics: Statistical Network Modeling (Dr. M. Azadkia, Prof. P. Bühlmann)
- Statistics Lab (Dr. M. Kalisch, Prof. M. Maathuis, Prof. M. Mächler, Dr. L. Meier, Prof. N. Meinshausen)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2020
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- Mathematik IV: Statistik (Dr. J. Ernest)
- Statistical Modelling (Prof. P. Bühlmann, Dr. M. Mächler)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Stochastic Simulation (Dr. F. Sigrist)
- Stochastik (Prof. M. Maathuis)
- Student Seminar in Statistics: Multiple Testing for Modern Data Science (Dr. M. Löffler, Dr. A. Taeb)
- Time Series Analysis (Dr. F. Balabdaoui)
- Using R for Data Analysis and Graphics (Part I) (Dr. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Dr. M. Mächler)
Spring semester 2020
- Advanced Statistical Modelling: Mixed Models (Dr. M. Mächler)
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Causality (Dr. C. Heinze-Deml)
- Computational Statistics (Prof. M. Maathuis)
- Empirical Process Theory with Applications (Prof. S. van de Geer)
- Programming with R for Reproducible Research (Dr. M. Mächler)
- Student Seminar in Statistics: Inference in Non-Classical Regression Models (Dr. F. Balabdaoui)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Prof. P. Bühlmann)
Autumn semester 2019
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Biostatistics (Dr. Matteo Tanadini)
- Applied Statistical Regression (Dr. M. Dettling)
- Bayesian Statistics (Dr. F. Sigrist)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- High-Dimensional Statistics (Prof. P. Bühlmann)
- Mathematics Tools in Machine Learning (Dr. F. Balabdaoui)
- Mathematik IV: Statistik (Dr. J. Ernest)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistical Modelling (Dr. C. Heinze-Deml)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Student Seminar in Statistics: The Art of Statistics (Prof. M. Maathuis, Prof. P. Bühlmann, Prof. S. van de Geer)
- Using R for Data Analysis and Graphics (Part I) (Dr. M. Mächler)
- Using R for Data Analysis and Graphics (Part II) (Dr. M. Mächler)
Spring semester 2019
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Causality (Dr. C. Heinze-Deml)
- Computational Statistics (Prof. M. Maathuis)
- Empirical Process Theory with Applications in Statistics and Machine Learning (Prof. S. van de Geer)
- Mixed Models (Dr. M. Mächler)
- Multivariate Statistics (Prof. N. Meinshausen)
- Programming with R for Reproducible Research (Dr. M. Mächler)
- Student Seminar in Statistics: Adversarial and Robust Machine Learning (Prof. P. Bühlmann)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2018
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Statistical Regression (Dr. M. Dettling)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- Mathematik IV: Statistik (Dr. J. Ernest)
- On Hypothesis Testing (Dr. F. Balabdaoui)
- Smoothing and Nonparametric Regression with Examples (Dr. S. Beran-Ghosh)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik II (Humanmedizin) (Dr. D. Stekhoven)
- Stochastic Simulation (Dr. F. Sigrist)
- Stochastics: Probability and Statistics (Prof. M. Maathuis)
- Student Seminar in Statistics: Statistical Learning with Sparsity (Dr. M. Mächler)
- Time Series Analysis (Prof. N. Meinshausen)
- Using R for Data Analysis and Graphics (Dr. M. Tanadini, Dr. M. Mächler)
Spring semester 2018
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Causality (Prof. N. Meinshausen)
- Computational Statistics (Prof. M. Maathuis)
- Mixed Models (Dr. M. Mächler)
- Programming with R for Reproducible Research (Dr. M. Mächler)
- Regression (Prof. P. Bühlmann)
- Student Seminar in Statistics: Nonparametric Estimation under Shape-Constraints (Dr. F. Balabdaoui)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2017
- Advanced Computational Statistics (Prof. N. Meinshausen)
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Statistical Regression (Dr. M. Dettling)
- Bayesian Statistics (Dr. F. Sigrist)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Prof. S. van de Geer)
- Mathematik IV: Statistik (Dr. D. Stekhoven)
- On Hypothesis Testing (Dr. F. Balabdaoui)
- Student Seminar in Statistics: Computer Age Statistical Inference (Prof. M. Maathuis)
- Smoothing and Nonparametric Regression (Dr. S. Beran-Ghosh)
- Statistical and Numerical Methods for Chemical Engineers (Dr. P. Müller)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Using R for Data Analysis and Graphics (Dr. A. Drewek, Dr. M. Mächler)
Spring semester 2017
- Applied Multivariate Statistics (Dr. F. Sigrist)
- Applied Time Series (Dr. M. Dettling)
- Causality (Prof. Marloes Maathuis)
- Computational Statistics (Dr. M. Mächler, Prof. P. Bühlmann)
- Mathematik IV: Statistik (Dr. D. Stekhoven)
- Multivariate Statistics (Prof. N. Meinshausen)
- Student Seminar in Statistics: Statistical Inference under Shape Restrictions (Dr. F. Balabdaoui)
- Statistik I (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Statistik und Wahrscheinlichkeitsrechnung (Dr. L. Meier)
Autumn semester 2016
- Applied Analysis of Variance and Experimental Design (Dr. L. Meier)
- Applied Statistical Regression (Dr. M. Dettling)
- Biostatistics (Dr. B. Sick)
- Data Analytics in Organisations and Business (Dr. I. Flückiger)
- Fundamentals of Mathematical Statistics (Dr. F. Balabdaoui)
- Smoothing and Nonparametric Regression (Dr. R. Ghosh)
- Statistik II (D-BIOL, D-HEST) (Dr. M. Kalisch)
- Stochastic Simulation (Dr. F. Sigrist)
- Stochastik (RW, D-MATL, D-MAVT) (Prof. Dr. Marloes Maathuis)
- Time Series Analysis (Prof. N. Meinshausen)
- Using R for Data Analysis and Graphics (Dr. A. Drewek, Dr. A. Papritz)
Spring semester 2016
- Applied Multivariate Statistics (Prof. M. Maathuis)
- Applied Time Series Analysis (Dr. M. Dettling)
- Estimation and Testing under Sparsity (Prof. S. van de Geer)
- Computational Statistics (Dr. M. Mächler, Prof. P. Bühlmann)
- Mathematik IV (Dr. D. Stekhoven)
- Programming with R for Reproducible Research (Dr. M. Mächler)
- Regression (Prof. N. Meinshausen)
- Seminar in Statistics: Learning Blackjack (Dr. J. Peters)
- Statistics Lab (Dr. M. Kalisch, Dr. L. Meier)
- Statistik und Wahrscheinlichkeitsrechnung (D-BAUG) (Dr. L. Meier)
- Statistik I (D-BIOL) (Dr. M. Kalisch)
Previous semesters
The websites of courses taught in previous semesters can be found here.Statistik und Wahrscheinlichkeitsrechnung
Mathematik IV: Statistik
Fundamentals of Mathematical Statistics
Applied ANOVA and Experimental Design
Bachelor, master and semester thesis topics
Below you can find topics for bachelor, master or semester theses that
the supervisors at the Seminar for Statistics offer.
Please note: This site is still under construction.
Juan Gamella (Peter Bühlmann)
Contact: E-mailBenchmarking causal discovery algorithms on real physical systems
Description: A fundamental difficulty in the field of causal inference is the absence of good validation datasets collected from real systems or phenomena. This is partly due to there being few incentives to collect and publish data from real systems that are already well understood, although such systems would be the ideal testbed for a large spectrum of causal and empirical inference algorithms. To address this problem, we have constructed two physical devices that allow measuring and manipulating different variables of simple but well-understood physical phenomena. The devices enable the inexpensive collection of large amounts of multivariate observational and interventional data, which, together with a justified causal ground truth, make them suitable to validate a wide range of causal inference algorithms.In this project, you will help answer whether existing causal discovery algorithms can learn these simple systems. This will entail a literature review of existing methods, writing code (in Python and/or R) to benchmark the algorithms and analyzing the results towards a publication. You will get an overview of the field of causal discovery and I will teach you some basic software engineering (git, best practices,...) if you don't already have these skills.
Methods: Causal discovery
Knowledge: Some implementation skills required (Python and R).
Peter Bühlmann
Contact: E-mailUsing anchor regression for out of distribution generalization of contemporary widely used risk prediction models
Description: Collaboration with Olga Demler, Harvard: Our research aims to illustrate the effectiveness of anchor regression in achieving out-of-distribution generalizability for widely used risk prediction models. We will analyze data from the UK Biobank (UKB) and VITAL (a large randomized controlled trial), though we may consider replacing the VITAL dataset with a different one if it better serves the goals of our project.Methods: anchor regression, regression, r-value
Knowledge:coding (preferably in R), experience in survival analysis and interest in generalizability and causality
Data: UK Biobank and VITAL – a large randomized controlled trial
Literature:
Rothenhäusler, D., Meinshausen, N., Bühlmann, P. and Peters, J., 2021. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(2), pp.215-246.
Kook, L., Sick, B. and Bühlmann, P., 2022. Distributional anchor regression. Statistics and Computing, 32(3), p.39.
Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H. and Cui, P., 2021. Towards out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624.
Jaljuli, I., Benjamini, Y., Shenhav, L., Panagiotou, O.A. and Heller, R., 2023. Quantifying replicability and consistency in systematic reviews. Statistics in Biopharmaceutical Research, 15(2), pp.372-385.
Lloyd-Jones, D. M. et al. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. Circulation 139, e1162–e1177 (2019).
Visseren, F. L. J. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 42, 3227–3337 (2021).
SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 42, 2439–2454 (2021)
Markus Kalisch
Contact: E-mailRobust Regression
Description: Standard assumptions in regression are oftentimes not met in practice. E.g., a single outlier might completely distort the result of an OLS regression. These outliers might be a nuisance (e.g. typo) or the main point of interest (e.g. a fraudulent transaction). Robust methods try to improve this situation by being less sensitive to severe model violations but at the same time try to produce reasonable estimates if the standard model assumptions are met. In this project, you will read publications in the area, write a summary, apply and implement methods in R, perform simulation studies.Methods: Extensions to linear regression motivated by many applied fields of research
Knowledge: Linear Regression
Distributional Regression
Description: Distributional regression models that overcome the traditional focus on relating the conditional mean of the response to explanatory variables and instead target either the complete conditional response distribution or more general features thereof have seen increasing interest in the past decade. We will review several such methods, summarize and compare them, and think about pros and cons for practicioners.Methods: Extensions to linear regression motivated by many applied fields of research
Knowledge: Linear Regression
Lukas Meier
Contact: E-mailBayesian Multilevel Models using Stan
Description: The R-package brms implements a wide range of multi-levels models (linear, generalized linear, ...) using a Bayesian approach which is based on STAN. The goal of this thesis is to get familiar with these approaches, compare to frequentist implementations like lme4 and highlight benefits and limitations.Methods: Generalized Linear Models, Bayesian approaches
Knowledge: Linear regression, Generalized Linear Models, basics of Bayesian approaches
Nicolai Meinshausen
Contact: E-mailFairness in Machine Learning
Description: Read a few key publications in the area of fairness in Machine Learning and write a concise summary, highlighting key conceptual commonalities and differencesMethods: Linear regression and classification; tree ensembles; structural causal models
Knowledge: Regression and classification; causality
Data: some standard benchmark datasets can be used but can also be more theoretical
Invariant Risk Minimization
Description: Implement the invariant risk minimization framework of Arjovski (2019) and write a discussionMethods: Linear models; tree ensembles; deep networks; causal inference
Knowledge: Machine Learning; Causality
Data: Datasets in paper or some other simple simulation data; possibly some larger datasets
Out-of-distribution generalizations
Description: Read some recent publications on out-of-distribution generalization and write a summary of their differences, advantages and drawbacks.Methods: Linear models; tree ensembles; structural causal models
Knowledge: Regression and Classification; Causality
Data: Some small simulation studies; if of interest also larger datasets on ICU patient data
Quantile Treatment Effects
Description: Read on quantile treatment effects which characterize the possibly heterogenous causal effect and write a summary of current approachesMethods: Linear models; tree ensembles; structural causal models; instrumental variables
Knowledge: Regression and Classification; Causality
Data: Can be theoretical; can also use some large-scale climate data
Xinwei Shen (Peter Bühlmann)
Contact: E-mailRepresentation learning and distributional robustness
Description: to tackle prediction problems under distribution shifts, existing causality-inspired robust prediction methods are mostly developed under linear models, e.g. anchor regression. The goal of this thesis is to extend these methods to nonlinear models and in particular by utilizing (nonlinear) representation learning.Methods: variational autoencoder, regression.
Knowledge: coding (preferably in python), some experience in neural networks and causality.
Data: mostly simulated; some real data such as single-cell or ICU data.
Literature:
Anchor regression: heterogeneous data meets causality
Causality-oriented robustness: exploiting general additive interventions
Auto encoding variational Bayes
Fabio Sigrist
Contact: E-mailNon-Gaussian random effects in machine learning models for non-Gaussian data
Description: Random effects models are widely used in statistics and machine learning for modeling hierarchically grouped (=clustered) data or data with high-cardinality categorical predictor variables. The goal of thesis is to investigate and compare non-Gaussian random effects models in machine learning models for non-Gaussian data.Methods: Neural networks, tree-boosting, linear regression models, grouped random effects models
Knowledge: Coding (R or Python, ideally also C++)
Data: Simulated and real-world data sets that need to be collected for the thesis
Neural estimators for likelihood-free inference
Description: For some models, the likelihood cannot be (efficiently) evaluated but sampling from the model is easy. Doing inference (usually Bayesian) solely relying on samples from the likelihood without calculating the likelihood is called "likelihood-free inference" or "simulation-based inference". Neural estimators are a relatively recent approach for doing likelihood-free inference. They work by mapping the data to a set of parameters of a distribution usig neural networks. The goal of this thesis is to compare different neural estimators for various models and settings.Methods: Neural networks, likelihood-free inference
Knowledge: Coding (R or Python)
Data: Real-world data sets that need to be collected for the thesis
Applications of machine learning methods in environmental sciences
Description: The goal is to apply and compare modern machine lerning methods for environmental applications and, potentially, develop novel methods. The specific type of application will be discussed with the supervisorMethods: Neural networks, tree-boosting, Gaussian processes, random effects
Knowledge: R or Python
Data: Simulated and real-world data sets that need to be collected for the thesis
Andrea Nava (Fabio Sigrist)
Contact: E-mailBridging Meta-Learning and Mixed Effects Models
Description: Meta-learning and mixed models share intriguing parallels, both addressing variability across tasks or groups through shared underlying structures. Mixed models use random effects to capture this variability, while meta-learning frameworks, such as Neural Processes, implicitly model the distribution over tasks to enable rapid adaptation. Despite these similarities, the conceptual connections between the two remain largely unexplored. This thesis aims to investigate these underutilized parallels, focusing on how mixed models' ideas, like hierarchical and crossed structures, can inform meta-learning, and whether meta-learning concepts can enhance the flexibility and predictive performance of mixed models. Additionally, the study will explore improvements in Neural Processes' training methods within this broader context.Methods: Mixed effects models, meta-learning, Neural Processes
Knowledge: Coding (Python/R)
Data: Simulated and real-world data sets that need to be collected for the thesis
Literature:
(Neural Processes) https://yanndubs.github.io/Neural-Process-Family/text/Intro.html
(Mixed Models) https://people.math.ethz.ch/~maechler/MEMo-pages/lMMwR.pdf
(Meta-Learning) https://arxiv.org/pdf/2307.04722