[R-sig-ME] differences between lmer and glmmTMB - follow up
Don Cohen
don-|me4 @end|ng |rom |@|@@c@3-|nc@com
Wed Nov 30 18:26:35 CET 2022
[Summary: two models that differ only in one added fixed effect
the deviance of the one with extra fixed effect coming out higher]
I think this is a related problem:
> mfull <- lmer(data = strict, LN_GCS ~ poly(hour,2) + poly(group_size,2) + poly(age,2) + poly(dom_rank,2) + Pregnancy + takeover + (1|ID) + (1|groupid) + (1|AssayNum))
> summary(mfull)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: LN_GCS ~ poly(hour, 2) + poly(group_size, 2) + poly(age, 2) +
poly(dom_rank, 2) + Pregnancy + takeover + (1 | ID) + (1 |
groupid) + (1 | AssayNum)
Data: strict
REML criterion at convergence: 2088.6
...
> m <- lmer(data = strict, LN_GCS ~ poly(hour,2) + poly(group_size,2) + poly(age,2) + poly(dom_rank,2) + Pregnancy + (1|ID) + (1|groupid) + (1|AssayNum))
> summary(m)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: LN_GCS ~ poly(hour, 2) + poly(group_size, 2) + poly(age, 2) +
poly(dom_rank, 2) + Pregnancy + (1 | ID) + (1 | groupid) +
(1 | AssayNum)
Data: strict
REML criterion at convergence: 2086.4
...
The REML criterion is supposeed to be -2 x loglik (deviance), right?
How can it be lower for m than for mfull when mfull contains all the same
effects (plus one more) ?
> AICctab(mfull, m, weights = T)
dAICc df weight
m 0.0 15 0.89
mfull 4.2 16 0.11
If I use glmmTMB I get the expected results - same loglik, AIC
different by 2
More information about the R-sig-mixed-models
mailing list