[R-sig-ME] differences between lmer and glmmTMB
Don Cohen
don-|me4 @end|ng |rom |@|@@c@3-|nc@com
Wed Nov 30 02:15:24 CET 2022
I wonder whether I'm missing something fundamental.
Should these two calls produce very similar results?
> mbase <- lmer(data = strict, LN_GCS ~ hour + group_size + age + dom_rank + Pregnancy + (1|ID) + (1|groupid) + (1|AssayNum))
> TMBmbase <- glmmTMB(data = strict, LN_GCS ~ hour + group_size + age + dom_rank + Pregnancy + (1|ID) + (1|groupid) + (1|AssayNum))
And similarly these two?
mfull <- lmer(data = strict, LN_GCS ~ poly(hour,2) + poly(group_size,2) + poly(age,2) + poly(dom_rank,2) + Pregnancy + takeover + (1|ID) + (1|groupid) + (1|AssayNum))
TMBmfull <- glmmTMB(data = strict, LN_GCS ~ poly(hour,2) + poly(group_size,2) + poly(age,2) + poly(dom_rank,2) + Pregnancy + takeover + (1|ID) + (1|groupid) + (1|AssayNum))
The results do look very similar with one glaring exception:
summary(mfull) says
REML criterion at convergence: 2088.6
summary(mbase) says
REML criterion at convergence: 2141.6
AICctab shows a difference in AIC of 42.7 (df 16 and 11)
whereas
summary(TMBmfull)
AIC BIC logLik deviance df.resid
2133.0 2206.7 -1050.5 2101.0 727
summary(TMBmbase)
AIC BIC logLik deviance df.resid
2135.4 2186.1 -1056.7 2113.4 732
for a difference in AIC of 2.4 !
(though AICctab shows a difference of 2.0 ?)
Is there some explanation? Should I believe one and not the other?
More information about the R-sig-mixed-models
mailing list