[R-sig-ME] Is there a way to deal with errors such as this?
Daniel Lüdecke
d@|uedecke @end|ng |rom uke@de
Sun Dec 15 11:20:56 CET 2019
The model seems to fit w/o error when you use "glmmTMB". Unlike glmmADAPTIVE, which uses a more time consuming adaptive Gaussian quadrature rule, glmmTMB might be faster to run the models (even faster than glmer(), probably).
library(glmmTMB)
fit <- glmmTMB(
cbind(Dead, Alive) ~ (0 + Trt) / Dose + (Dose | Rep),
data = dat,
family = binomial(link = "probit")
)
parameters::model_parameters(fit)
#> Parameter | Coefficient | SE | 95% CI | z | df | p
#> ----------------------------------------------------------------------------------
#> Trt16hour10deg | -0.74 | 0.33 | [-1.38, -0.10] | -2.26 | 109 | 0.024
#> Trt16hour20deg | 0.13 | 0.33 | [-0.52, 0.78] | 0.40 | 109 | 0.691
#> Trt16hour5deg | -0.86 | 0.32 | [-1.48, -0.24] | -2.71 | 109 | 0.007
#> Trt8hour10deg | -0.12 | 0.37 | [-0.84, 0.60] | -0.32 | 109 | 0.749
#> Trt8hour20deg | -0.87 | 0.31 | [-1.49, -0.26] | -2.79 | 109 | 0.005
#> Trt8hour5deg | -0.77 | 0.31 | [-1.38, -0.17] | -2.50 | 109 | 0.012
#> Trt16hour10deg : Dose | 0.16 | 0.01 | [ 0.14, 0.19] | 13.50 | 109 | < .001
#> Trt16hour20deg : Dose | 0.23 | 0.02 | [ 0.18, 0.28] | 9.35 | 109 | < .001
#> Trt16hour5deg : Dose | 0.08 | 0.01 | [ 0.07, 0.09] | 13.42 | 109 | < .001
#> Trt8hour10deg : Dose | 0.08 | 0.01 | [ 0.07, 0.10] | 10.84 | 109 | < .001
#> Trt8hour20deg : Dose | 0.17 | 0.01 | [ 0.15, 0.19] | 16.59 | 109 | < .001
#> Trt8hour5deg : Dose | 0.05 | 0.00 | [ 0.04, 0.06] | 14.52 | 109 | < .001
Best
Daniel
-----Ursprüngliche Nachricht-----
Von: R-sig-mixed-models <r-sig-mixed-models-bounces using r-project.org> Im Auftrag von Rolf Turner
Gesendet: Sonntag, 15. Dezember 2019 02:20
An: r-sig-mixed-models using r-project.org
Betreff: [R-sig-ME] Is there a way to deal with errors such as this?
By "this" I mean as demonstrated in the following code. The file
testData.txt is attached.
X <- dget("testData.txt")
library(lme4)
fit <- glmer(cbind(Dead,Alive) ~ (0+Trt)/Dose + (Dose | Rep),
data=X,family=binomial(link="probit"))
The foregoing falls over with the (rather complex) error message:
> Error in pwrssUpdate(pp, resp, tol = tolPwrss, GQmat = GHrule(0L), compDev = compDev, :
> (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate
I note that mixed_model() from GLMMadaptive seems to be able to deal
with these data and this model:
library(GLMMadaptive)
fit <- mixed_model(fixed=cbind(Dead,Alive) ~ (0+Trt)/Dose,
random=~Dose | Rep,
data=X,family=binomial(link="probit"))
The foregoing runs without complaint.
I am applying the glmer() model in the context of doing some fairly
elaborate simulations (in which "X" gets randomly generated) and the
error causes the simulations to crash unpleasantly. So I would *like* a
magic incantation that I can apply in an automated way to prevent the
error from occurring.
I can of course wrap function calls up in try() and if there is an error
generate a new data set and go again. However I'm a little apprehensive
that this might bias the results of the simulations in some way.
I could also switch to using mixed_model(), but would prefer to stick
with the devil I know (i.e. glmer()) for the sake of consistency with
other work that I have done. (And who knows? Maybe in the course of
the simulations mixed_model() might fall over too, from time to time.)
I'd appreciate any avuncular (or materteral) advice that anyone might be
inclined to offer.
cheers,
Rolf
--
Honorary Research Fellow
Department of Statistics
University of Auckland
Phone: +64-9-373-7599 ext. 88276
--
_____________________________________________________________________
Universitätsklinikum Hamburg-Eppendorf; Körperschaft des öffentlichen Rechts; Gerichtsstand: Hamburg | www.uke.de
Vorstandsmitglieder: Prof. Dr. Burkhard Göke (Vorsitzender), Prof. Dr. Dr. Uwe Koch-Gromus, Joachim Prölß, Marya Verdel
_____________________________________________________________________
SAVE PAPER - THINK BEFORE PRINTING
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list