[R-sig-ME] glmer vs glmmPQL vs glmmadmb
Ben Bolker
bbolker at gmail.com
Tue Apr 5 05:51:45 CEST 2016
If glmer and glmmADMB agree with each other and disagree with
glmmPQL, I would generally trust the former (Laplace approximation is
better than PQL, esp for binary data). However, (1) you should also
try Gauss-Hermite quadrature (nAGQ>1) in glmer, and (2) the very large
magnitude of your parameters makes it look like you probably have a
complete-separation problem ...
On Mon, Apr 4, 2016 at 10:53 PM, Magdalena Wiedermann <mwiederm at mtu.edu> wrote:
> Dear List
>
> Quick question: Why is the interaction term usingglmmPQL not
> significant, whereas it is highly significant using glmer and glmmadmb?
>
> Thank you!
> Lena
>
> *_
> Example:_*
>
> resp = resp<-cbind(data$Dead, data$Alive)
>
> m1<-glmer(resp~(treatm+log(Tree))^2+block+(1|plot), family=binomial,
> data = data)
>
> summary(m1)
>
>
> m2<-glmmPQL(resp~(treatm+log(Tree))^2+block, random=~1|plot,
> family=binomial, data=data)
>
> summary(m2)
>
>
> |m3<-|glmmadmb|(||resp||~||(||treatm||+||log(Tree)||)^2||+block,
> random=~1|plot,||||family=||"||binomial||"||, ||data=||data||)|
>
> |summary(m3) |*_Results:_*
>
> > car::Anova(m1)
> Analysis of Deviance Table (Type II Wald chisquare tests)
>
> Response: resp
> Chisq Df Pr(>Chisq)
> treatm 82.6249 4 <2e-16 ***
> log(Tree) 17992.6841 1 <2e-16 ***
> block 3.6873 5 0.5953
> treatm:log(Tree) 230.6844 4 <2e-16 ***
>
>
> >car::Anova(m2)
> Analysis of Deviance Table (Type II tests)
>
> Response: resp
> Chisq Df Pr(>Chisq)
> treatm 114.4015 4 <2e-16 ***
> log(Tree) 384.7095 1 <2e-16 ***
> block 1.0899 5 0.9550
> treatm:log(Tree) 2.9839 4 0.5605
>
> > car::Anova(m3)
> Analysis of Deviance Table (Type II tests)
>
> Response: resp
> Df Chisq Pr(>Chisq)
> treatm 4 68.7297 4.208e-14 ***
> log(Tree) 1 1846.9933 < 2.2e-16 ***
> block 5 3.0464 0.6928
> treatm:log(Tree) 4 117.7358 < 2.2e-16 ***
> Residuals 734
>
>
> p.s.: this it true for summary(m1,m2,m3) too.
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list