[R-sig-ME] glmer vs glmmPQL vs glmmadmb
Magdalena Wiedermann
mwiederm at mtu.edu
Tue Apr 5 04:53:18 CEST 2016
Dear List
Quick question: Why is the interaction term usingglmmPQL not
significant, whereas it is highly significant using glmer and glmmadmb?
Thank you!
Lena
*_
Example:_*
resp = resp<-cbind(data$Dead, data$Alive)
m1<-glmer(resp~(treatm+log(Tree))^2+block+(1|plot), family=binomial,
data = data)
summary(m1)
m2<-glmmPQL(resp~(treatm+log(Tree))^2+block, random=~1|plot,
family=binomial, data=data)
summary(m2)
|m3<-|glmmadmb|(||resp||~||(||treatm||+||log(Tree)||)^2||+block,
random=~1|plot,||||family=||"||binomial||"||, ||data=||data||)|
|summary(m3) |*_Results:_*
> car::Anova(m1)
Analysis of Deviance Table (Type II Wald chisquare tests)
Response: resp
Chisq Df Pr(>Chisq)
treatm 82.6249 4 <2e-16 ***
log(Tree) 17992.6841 1 <2e-16 ***
block 3.6873 5 0.5953
treatm:log(Tree) 230.6844 4 <2e-16 ***
>car::Anova(m2)
Analysis of Deviance Table (Type II tests)
Response: resp
Chisq Df Pr(>Chisq)
treatm 114.4015 4 <2e-16 ***
log(Tree) 384.7095 1 <2e-16 ***
block 1.0899 5 0.9550
treatm:log(Tree) 2.9839 4 0.5605
> car::Anova(m3)
Analysis of Deviance Table (Type II tests)
Response: resp
Df Chisq Pr(>Chisq)
treatm 4 68.7297 4.208e-14 ***
log(Tree) 1 1846.9933 < 2.2e-16 ***
block 5 3.0464 0.6928
treatm:log(Tree) 4 117.7358 < 2.2e-16 ***
Residuals 734
p.s.: this it true for summary(m1,m2,m3) too.
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list