[R-sig-ME] Non-convergence error for GLMM with LME4?
Leanna Jones
leanna_jones at hotmail.com
Sat Mar 23 23:45:30 CET 2013
From: leanna_jones at hotmail.com
To: r-help at r-project.org
Subject: Non-convergence error for GLMM with LME4?
Date: Sat, 23 Mar 2013 13:47:47 -0700
Hello! I am trying to run a GLMM using LME4, and keep getting the warning message: "In mer_finalize(ans) : false convergence (8)" I am quite new to R, and in looking into this thus far, it appears that there are a variety of reasons why this might occur, such as needing to standardize some parameters or if all subjects in one combination of parameters all have the same outcome. I also understand that the warning does not necessarily mean that the model results are invalid, but they might be...however, I am unsure how to interpret this in my own situation.
I started with a somewhat more complex model, but kept simplifying it to see if I could get the warning to go away (so it might indicate which predictor variable was the problem...). However, even when using a single fixed effect variable (just sex, for instance), I continue to have the problem, which makes me think the issue may be with my random effect. Here is the model I would like to run:
mm1=lmer(BinomialOutcome~AgeGroup+Sex+Study.Site+(1|BearID.reformatted),family=binomial)
The study is based on bear captures over a period of time, such that some bears are captured only once, while others many times (in a very unbalanced fashion); I would like to use all the data, but want to account for resampling of specific individuals. However, this means that there are nearly 600 different bear IDs, and I am wondering if this is the reason why the model will not converge? If so, what is the best way to address this? Or other ideas as to what might be going on?
When I run the line above with verbose on, I get the following:
> mm1=lmer(BinomialOutcome~AgeGroup+Sex+Study.Site+(1|BearID.reformatted),family=binomial) #random effect: Ind with intercept of 1, correcting for the intercept/variation btw individuals
0: 805.13676: 1.12717 -0.556586 1.85210 2.38794 2.36938 2.35604 -2.22337 1.30764 1.34134 -2.47444 -1.63320
1: 748.91032: 2.05259 -0.834683 1.81369 2.42567 2.40069 2.38217 -2.31535 1.22744 1.26468 -2.64606 -1.74027
2: 723.97734: 2.74220 -1.05673 2.00374 2.71876 2.57376 2.50128 -2.73578 1.23505 1.35678 -2.98235 -1.63736
3: 715.51275: 2.92015 -1.58830 2.15652 3.03669 2.81316 2.67649 -3.28992 1.30372 1.36311 -3.32467 -1.84785
4: 696.36424: 3.21244 -1.51265 2.41407 3.41250 3.22182 2.99137 -3.54075 1.68499 1.83767 -3.33953 -1.80989
5: 672.69327: 4.20847 -2.35950 3.26463 4.32168 4.39792 4.00460 -3.72829 1.41841 2.56574 -4.27911 -1.86318
6: 664.48332: 4.37811 -2.58726 3.01153 4.60841 4.65061 4.30175 -4.11225 2.30181 2.55998 -4.38222 -2.02300
7: 625.68427: 7.31164 -4.89788 5.63003 7.04671 7.95742 8.12903 -4.86511 3.64151 3.86169 -6.33864 -2.89485
8: 619.38278: 9.39340 -7.21835 5.63590 11.1393 10.6331 11.5975 -4.65786 3.81066 6.58406 -9.13652 -2.96142
9: 613.14410: 9.53164 -7.17298 6.01739 10.8896 10.7209 11.6709 -4.81531 4.06987 6.53556 -9.01013 -3.05630
10: 600.31130: 10.0557 -7.29631 7.68818 10.1017 11.1766 12.1945 -5.40073 5.30987 6.73629 -8.62503 -3.67308
11: 589.17852: 11.9972 -9.32646 9.77915 13.1274 13.2796 14.9828 -6.09763 6.80325 9.19492 -9.58777 -5.25910
12: 586.76154: 12.3176 -9.61034 9.97050 13.3227 13.7241 15.3584 -6.13498 7.19387 9.59990 -9.83274 -5.36590
13: 586.09051: 12.3760 -9.59270 9.95463 13.2692 13.7816 15.3696 -6.14017 7.35785 9.64404 -9.83450 -5.34840
14: 585.97813: 12.3886 -9.59431 9.95680 13.2579 13.7946 15.3724 -6.14235 7.38957 9.65379 -9.83525 -5.34966
15: 585.77123: 12.4143 -9.59929 9.96353 13.2359 13.8209 15.3784 -6.14715 7.45208 9.67407 -9.83681 -5.35395
16: 585.69436: 12.4251 -9.60281 9.96832 13.2277 13.8318 15.3810 -6.14945 7.47605 9.68290 -9.83747 -5.35717
17: 585.54933: 12.4469 -9.61094 9.97946 13.2122 13.8536 15.3863 -6.15434 7.52306 9.70121 -9.83879 -5.36474
18: 585.49415: 12.4558 -9.61507 9.98519 13.2068 13.8624 15.3886 -6.15653 7.54097 9.70908 -9.83931 -5.36868
19: 585.38801: 12.4740 -9.62396 9.99753 13.1967 13.8800 15.3933 -6.16106 7.57607 9.72529 -9.84034 -5.37720
20: 585.38387: 12.4748 -9.62436 9.99809 13.1963 13.8807 15.3935 -6.16126 7.57741 9.72597 -9.84038 -5.37759
21: 585.35100: 12.4807 -9.62760 10.0026 13.1936 13.8863 15.3951 -6.16281 7.58812 9.73146 -9.84070 -5.38074
22: 585.35042: 12.4807 -9.62760 10.0026 13.1936 13.8863 15.3951 -6.16281 7.58812 9.73146 -9.87324 -5.38074
23: 585.22373: 12.5045 -9.64059 10.0207 13.1830 13.9088 15.4016 -6.16903 7.63092 9.75346 -9.87324 -5.39333
24: 585.21879: 12.5055 -9.64113 10.0216 13.1827 13.9097 15.4018 -6.16930 7.63249 9.75441 -9.87323 -5.39392
25: 585.20893: 12.5075 -9.64224 10.0233 13.1822 13.9114 15.4024 -6.16984 7.63564 9.75632 -9.87322 -5.39512
26: 585.20499: 12.5083 -9.64268 10.0240 13.1820 13.9121 15.4026 -6.17006 7.63689 9.75709 -9.87321 -5.39560
27: 585.20420: 12.5085 -9.64277 10.0241 13.1820 13.9123 15.4027 -6.17011 7.63714 9.75724 -9.87321 -5.39570
28: 585.19792: 12.5098 -9.64349 10.0252 13.1817 13.9134 15.4030 -6.17046 7.63914 9.75847 -9.87320 -5.39647
29: 585.19767: 12.5098 -9.64351 10.0253 13.1817 13.9134 15.4030 -6.17047 7.63922 9.75852 -9.87320 -5.39650
30: 585.19762: 12.5098 -9.64352 10.0253 13.1817 13.9135 15.4030 -6.17047 7.63923 9.75853 -9.87320 -5.39651
31: 585.19752: 12.5099 -9.64353 10.0253 13.1817 13.9135 15.4030 -6.17048 7.63926 9.75855 -9.87320 -5.39652
32: 585.19748: 12.5099 -9.64354 10.0253 13.1817 13.9135 15.4030 -6.17048 7.63928 9.75856 -9.87320 -5.39653
33: 585.19740: 12.5099 -9.64355 10.0253 13.1817 13.9135 15.4031 -6.17049 7.63930 9.75857 -9.87320 -5.39654
34: 585.19736: 12.5099 -9.64355 10.0253 13.1817 13.9135 15.4031 -6.17049 7.63931 9.75858 -9.87320 -5.39654
35: 585.19730: 12.5099 -9.64356 10.0253 13.1817 13.9135 15.4031 -6.17049 7.63933 9.75859 -9.87320 -5.39655
36: 585.19727: 12.5099 -9.64356 10.0253 13.1817 13.9135 15.4031 -6.17049 7.63934 9.75860 -9.87320 -5.39655
37: 585.19722: 12.5099 -9.64356 10.0253 13.1817 13.9135 15.4031 -6.17050 7.63936 9.75861 -9.87320 -5.39656
38: 585.19719: 12.5099 -9.64363 10.0253 13.1817 13.9135 15.4031 -6.17050 7.63936 9.75861 -9.87329 -5.39656
39: 585.19679: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75869 -9.87326 -5.39661
40: 585.19677: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75869 -9.87326 -5.39661
41: 585.19677: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75869 -9.87326 -5.39661
42: 585.19677: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
43: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
44: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
45: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
46: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
47: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
48: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
49: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
50: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
51: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
52: 585.19676: 12.5100 -9.64367 10.0254 13.1817 13.9136 15.4031 -6.17052 7.63949 9.75870 -9.87326 -5.39661
Warning message:
In mer_finalize(ans) : false convergence (8)
I read something on another thread about high values (like the -9.6) being a problem here, but I do not completely understand how to interpret or address it. The model will run, and the results appear highly significant, but I do not know to what extent they can be trusted...in case it is relevant, I am using the 64-bit version of R 2.15.1. (I also tried running it in the 32-bit version, with the same outcome.) On another thread I also saw a suggestion about maybe trying a development version of R with updates using lme4a(?), but I am not sure where/how I would access that. Would this be similar to using the pre-release version of R 3.0?
Any help is greatly appreciated! Thank you!!
More information about the R-sig-mixed-models
mailing list