[R-sig-ME] Interpreting clmm results with ordinal effect

Petri Lankoski petri.lankoski at gmail.com
Mon May 14 16:29:50 CEST 2012


Dear list members,

I have questionnaire data (5 point likert-scale) as well as some 
categorical variable (the ordinal data is not normally distributed). I 
have started to analyze the data with ordinal package and its clmm 
function.  With the categorical data the outputs are understandable, but 
I have not able to understand the output with ordinal data (tutorials 
and books I have referenced have not been helpful). How I should 
interpret L, Q, C and ^4 in output?

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: q4 ~ q7 + sex + (1 | game)
data:    df

  link  threshold nobs logLik  AIC     niter   max.grad cond.H
  logit symmetric 562  -558.69 1135.37 20(857) 7.52e-06 2.8e+01

Random effects:
         Var Std.Dev
game 0.1026  0.3204
Number of groups:  game 11

Coefficients:
       Estimate Std. Error z value Pr(>|z|)
q7.L    4.3726     0.3815  11.461   <2e-16 ***
q7.Q    0.3842     0.3014   1.275   0.2024
q7.C    0.2504     0.2504   1.000   0.3173
q7^4    0.2771     0.2117   1.309   0.1905
sex.L   0.2659     0.1297   2.050   0.0404 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:
           Estimate Std. Error z value
central.1  -2.5827     0.2212 -11.676
central.2  -0.3151     0.1818  -1.733
spacing.1   2.5340     0.1506  16.828


Any help or pointers appreciated!

-- 
Petri Lankoski, petri.lankoski at iki.fi
www.iki.fi/petri.lankoski



More information about the R-sig-mixed-models mailing list