[R-sig-ME] Interpreting clmm results with ordinal effect
Petri Lankoski
petri.lankoski at gmail.com
Mon May 14 16:29:50 CEST 2012
Dear list members,
I have questionnaire data (5 point likert-scale) as well as some
categorical variable (the ordinal data is not normally distributed). I
have started to analyze the data with ordinal package and its clmm
function. With the categorical data the outputs are understandable, but
I have not able to understand the output with ordinal data (tutorials
and books I have referenced have not been helpful). How I should
interpret L, Q, C and ^4 in output?
Cumulative Link Mixed Model fitted with the Laplace approximation
formula: q4 ~ q7 + sex + (1 | game)
data: df
link threshold nobs logLik AIC niter max.grad cond.H
logit symmetric 562 -558.69 1135.37 20(857) 7.52e-06 2.8e+01
Random effects:
Var Std.Dev
game 0.1026 0.3204
Number of groups: game 11
Coefficients:
Estimate Std. Error z value Pr(>|z|)
q7.L 4.3726 0.3815 11.461 <2e-16 ***
q7.Q 0.3842 0.3014 1.275 0.2024
q7.C 0.2504 0.2504 1.000 0.3173
q7^4 0.2771 0.2117 1.309 0.1905
sex.L 0.2659 0.1297 2.050 0.0404 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Threshold coefficients:
Estimate Std. Error z value
central.1 -2.5827 0.2212 -11.676
central.2 -0.3151 0.1818 -1.733
spacing.1 2.5340 0.1506 16.828
Any help or pointers appreciated!
--
Petri Lankoski, petri.lankoski at iki.fi
www.iki.fi/petri.lankoski
More information about the R-sig-mixed-models
mailing list