[R-sig-ME] Rasch with lme4
Andy Fugard
andy.fugard at sbg.ac.at
Tue Jun 9 19:36:38 CEST 2009
Andy Fugard wrote:
> Daniel Ezra Johnson wrote:
>> In the output for this model:
>>
>>>> M2 = lm(Reaction ~ Days + Sex + factor(Subject), sleepstudy)
>>>> summary(M2)
>>
>> You will see that one of the coefficients is NA. If you put
>> factor(Subject) before Sex it would be SexMale that comes out NA.
>>
>> Nested fixed effects will always return an error (or incomplete
>> model), unless I'm completely mistaken.
You were correct! (Estimate for "factor(Subject)371" is broken.)
Thanks for a tip off-list from Daniel and Chuck that I check how I made
up the participants' sex :-)
So then does something similar happen for some cases when you try to
model items as fixed effects?
A
> # Try again again
> M1 = lmer(Reaction ~ Days + (1|Subject), sleepstudy)
>
> # Use the random intercept to make up a Male/Female IV
> ranefs = ranef(M1)$Subject
> sexDF = data.frame(Sex =
cut(ranefs$"(Intercept)",2,labels=c("Female","Male")),
+ Subject = rownames(ranefs))
>
> sleepstudy.sex = merge(sleepstudy,sexDF)
>
>
> M2 = lm(Reaction ~ Days + Sex + factor(Subject), sleepstudy.sex)
> summary(M2)
Call:
lm(formula = Reaction ~ Days + Sex + factor(Subject), data = sleepstudy.sex)
Residuals:
Min 1Q Median 3Q Max
-85.970 -13.790 1.767 12.957 53.056
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 257.3095 14.5333 17.705 < 2e-16 ***
Days 10.6920 0.9627 11.106 < 2e-16 ***
SexMale 59.7598 18.0982 3.302 0.001472 **
factor(Subject)309 -85.8306 18.8055 -4.564 1.92e-05 ***
factor(Subject)310 -79.1101 19.8317 -3.989 0.000153 ***
factor(Subject)330 -63.0263 16.9719 -3.714 0.000391 ***
factor(Subject)331 -47.4795 16.1890 -2.933 0.004452 **
factor(Subject)332 -73.4632 16.1945 -4.536 2.13e-05 ***
factor(Subject)333 -45.4487 16.9719 -2.678 0.009098 **
factor(Subject)334 -5.9602 19.8186 -0.301 0.764446
factor(Subject)335 -58.4926 18.8025 -3.111 0.002638 **
factor(Subject)337 14.6896 16.1818 0.908 0.366900
factor(Subject)349 -28.7516 18.8055 -1.529 0.130498
factor(Subject)350 -67.3889 16.1826 -4.164 8.26e-05 ***
factor(Subject)351 -26.1381 18.8055 -1.390 0.168665
factor(Subject)352 -35.0784 16.1890 -2.167 0.033425 *
factor(Subject)369 -52.4248 16.1945 -3.237 0.001799 **
factor(Subject)370 -25.4865 18.8055 -1.355 0.179400
factor(Subject)371 NA NA NA NA
factor(Subject)372 -45.9271 16.9741 -2.706 0.008433 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 28.03 on 75 degrees of freedom
Multiple R-squared: 0.8089, Adjusted R-squared: 0.763
F-statistic: 17.63 on 18 and 75 DF, p-value: < 2.2e-16
>
> # Broken as promised!
More information about the R-sig-mixed-models
mailing list