[R-sig-ME] Rasch with lme4
Andy Fugard
andy.fugard at sbg.ac.at
Tue Jun 9 19:06:54 CEST 2009
Daniel Ezra Johnson wrote:
> In the output for this model:
>
>>> M2 = lm(Reaction ~ Days + Sex + factor(Subject), sleepstudy)
>>> summary(M2)
>
> You will see that one of the coefficients is NA. If you put
> factor(Subject) before Sex it would be SexMale that comes out NA.
>
> Nested fixed effects will always return an error (or incomplete
> model), unless I'm completely mistaken.
Complete output pasted below. It's been a long day, but I cannae see an
NA! Is your output different?
My intuition tells me that order of the variables shouldn't affect these
estimates as addition is commutative. I imagine they would affect a
call to a (sequential) "anova" as this determines the order of nested
model comparisons from the order of the variables.
A
> M2a = lm(Reaction ~ Days + Sex + factor(Subject), sleepstudy)
> summary(M2a)
Call:
lm(formula = Reaction ~ Days + Sex + factor(Subject), data = sleepstudy)
Residuals:
Min 1Q Median 3Q Max
-101.4284 -17.2881 0.2311 15.2005 132.6242
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 293.6628 10.8062 27.176 < 2e-16 ***
Days 10.4511 0.8067 12.956 < 2e-16 ***
SexMale 2.4017 4.6864 0.512 0.609020
factor(Subject)309 -126.6607 13.8995 -9.113 3.18e-16 ***
factor(Subject)310 -111.1326 13.8915 -8.000 2.37e-13 ***
factor(Subject)330 -38.6722 13.8995 -2.782 0.006047 **
factor(Subject)331 -32.6978 13.8915 -2.354 0.019798 *
factor(Subject)332 -34.8318 13.8915 -2.507 0.013160 *
factor(Subject)333 -25.7353 13.8995 -1.852 0.065935 .
factor(Subject)334 -46.8318 13.8915 -3.371 0.000938 ***
factor(Subject)335 -91.8236 13.8995 -6.606 5.55e-10 ***
factor(Subject)337 33.5872 13.8915 2.418 0.016737 *
factor(Subject)349 -66.0592 13.8995 -4.753 4.44e-06 ***
factor(Subject)350 -28.5312 13.8915 -2.054 0.041618 *
factor(Subject)351 -51.7959 13.8995 -3.726 0.000269 ***
factor(Subject)352 -4.7123 13.8915 -0.339 0.734889
factor(Subject)369 -36.0992 13.8915 -2.599 0.010234 *
factor(Subject)370 -50.1919 13.8995 -3.611 0.000408 ***
factor(Subject)371 -47.1498 13.8915 -3.394 0.000868 ***
factor(Subject)372 -24.0075 13.8995 -1.727 0.086056 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 31.06 on 160 degrees of freedom
Multiple R-squared: 0.7282, Adjusted R-squared: 0.6959
F-statistic: 22.56 on 19 and 160 DF, p-value: < 2.2e-16
>
> M2b = lm(Reaction ~ Days + factor(Subject) + Sex, sleepstudy)
> summary(M2b)
Call:
lm(formula = Reaction ~ Days + factor(Subject) + Sex, data = sleepstudy)
Residuals:
Min 1Q Median 3Q Max
-101.4284 -17.2881 0.2311 15.2005 132.6242
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 293.6628 10.8062 27.176 < 2e-16 ***
Days 10.4511 0.8067 12.956 < 2e-16 ***
factor(Subject)309 -126.6607 13.8995 -9.113 3.18e-16 ***
factor(Subject)310 -111.1326 13.8915 -8.000 2.37e-13 ***
factor(Subject)330 -38.6722 13.8995 -2.782 0.006047 **
factor(Subject)331 -32.6978 13.8915 -2.354 0.019798 *
factor(Subject)332 -34.8318 13.8915 -2.507 0.013160 *
factor(Subject)333 -25.7353 13.8995 -1.852 0.065935 .
factor(Subject)334 -46.8318 13.8915 -3.371 0.000938 ***
factor(Subject)335 -91.8236 13.8995 -6.606 5.55e-10 ***
factor(Subject)337 33.5872 13.8915 2.418 0.016737 *
factor(Subject)349 -66.0592 13.8995 -4.753 4.44e-06 ***
factor(Subject)350 -28.5312 13.8915 -2.054 0.041618 *
factor(Subject)351 -51.7959 13.8995 -3.726 0.000269 ***
factor(Subject)352 -4.7123 13.8915 -0.339 0.734889
factor(Subject)369 -36.0992 13.8915 -2.599 0.010234 *
factor(Subject)370 -50.1919 13.8995 -3.611 0.000408 ***
factor(Subject)371 -47.1498 13.8915 -3.394 0.000868 ***
factor(Subject)372 -24.0075 13.8995 -1.727 0.086056 .
SexMale 2.4017 4.6864 0.512 0.609020
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 31.06 on 160 degrees of freedom
Multiple R-squared: 0.7282, Adjusted R-squared: 0.6959
F-statistic: 22.56 on 19 and 160 DF, p-value: < 2.2e-16
More information about the R-sig-mixed-models
mailing list