[R-meta] effect size transformation for network MA

Philippe Tadger ph|||ppet@dger @end|ng |rom gm@||@com
Sun Aug 29 14:45:17 CEST 2021


Beatiful! Thank you for your prompt help prof Gerta!


On 29/08/2021 14:42, Dr. Gerta Rücker wrote:
> Dear Philippe,
>
> you know there is a function pairwise() in netmeta just to this aim?
>
> See
>
> library(netmeta)
> help(pairwise)
>
> (Unfortunately, our book is outdated with respect to this and many 
> other points ...)
>
> Best,
>
> Gerta
>
>
> Am 29.08.2021 um 13:51 schrieb Philippe Tadger:
>> Dear colleges,
>>
>> I'm trying to build a pipeline (or at least a more automatize approach)
>> that facilitate the data transformation  (from raw data to TE and seTE)
>> in R for a Network MA.
>>
>> My starting point is the example that Guido present in Chapter 8 (here
>> <https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Englisch/Studies_and_Teaching/Educational_Books/Meta-Analysis_with_R/R_Code/08-network.R>): 
>>
>>
>> # help(Senn2013)
>> willms <- data.frame(treatment=c("metf", "acar", "plac"),
>>                        n=c(29, 31, 29),
>>                        mean=c(-2.5, -2.3, -1.3),
>>                        sd=c(0.862, 1.782, 1.831),
>>                        stringsAsFactors=FALSE)
>> willms
>>
>> (comp12 <- metacont(n[1], mean[1], sd[1], n[2], mean[2],
>> sd[2],data=willms, sm="MD"))
>> (comp13 <- metacont(n[1], mean[1], sd[1], n[3], mean[3],
>> sd[3],data=willms, sm="MD"))
>> (comp23 <- metacont(n[2], mean[2], sd[2], n[3], mean[3],
>> sd[3],data=willms, sm="MD"))
>> TE <- c(comp12$TE, comp13$TE, comp23$TE)
>> seTE <- c(comp12$seTE, comp13$seTE, comp23$seTE)
>>
>> Is there a more efficient way to produce the TE and seTE with escalc?
>>
>> For example, this does not gives the same seTE values:
>>
>> escalc(measure="MD",n1i=n[1], m1i=mean[1],
>>          sd1i=sd[1], n2i=n[2], m2i=mean[2], sd2i=sd[2],
>>          data=willms)
>>
>> escalc(measure="MD",n1i=n[1], m1i=mean[1],
>>          sd1i=sd[1], n2i=n[3], m2i=mean[3], sd2i=sd[3],
>>          data=willms)
>>
>> escalc(measure="MD",n1i=n[2], m1i=mean[2],
>>          sd1i=sd[2], n2i=n[3], m2i=mean[3], sd2i=sd[3],
>>          data=willms)
>>
>> Maybe with Stata?
>>
>> Thanks in advance for your valuable help!
>>
-- 
Kind regards/Saludos cordiales
*Philippe Tadger*
ORCID <https://orcid.org/0000-0002-1453-4105>, Reseach Gate 
<https://www.researchgate.net/profile/Philippe-Tadger>
Phone/WhatsApp: +32498774742

	[[alternative HTML version deleted]]



More information about the R-sig-meta-analysis mailing list