[R-meta] effect size transformation for network MA

Dr. Gerta Rücker ruecker @end|ng |rom |mb|@un|-|re|burg@de
Sun Aug 29 14:42:47 CEST 2021


Dear Philippe,

you know there is a function pairwise() in netmeta just to this aim?

See

library(netmeta)
help(pairwise)

(Unfortunately, our book is outdated with respect to this and many other 
points ...)

Best,

Gerta


Am 29.08.2021 um 13:51 schrieb Philippe Tadger:
> Dear colleges,
>
> I'm trying to build a pipeline (or at least a more automatize approach)
> that facilitate the data transformation  (from raw data to TE and seTE)
> in R for a Network MA.
>
> My starting point is the example that Guido present in Chapter 8 (here
> <https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Englisch/Studies_and_Teaching/Educational_Books/Meta-Analysis_with_R/R_Code/08-network.R>):
>
> # help(Senn2013)
> willms <- data.frame(treatment=c("metf", "acar", "plac"),
>                        n=c(29, 31, 29),
>                        mean=c(-2.5, -2.3, -1.3),
>                        sd=c(0.862, 1.782, 1.831),
>                        stringsAsFactors=FALSE)
> willms
>
> (comp12 <- metacont(n[1], mean[1], sd[1], n[2], mean[2],
> sd[2],data=willms, sm="MD"))
> (comp13 <- metacont(n[1], mean[1], sd[1], n[3], mean[3],
> sd[3],data=willms, sm="MD"))
> (comp23 <- metacont(n[2], mean[2], sd[2], n[3], mean[3],
> sd[3],data=willms, sm="MD"))
> TE <- c(comp12$TE, comp13$TE, comp23$TE)
> seTE <- c(comp12$seTE, comp13$seTE, comp23$seTE)
>
> Is there a more efficient way to produce the TE and seTE with escalc?
>
> For example, this does not gives the same seTE values:
>
> escalc(measure="MD",n1i=n[1], m1i=mean[1],
>          sd1i=sd[1], n2i=n[2], m2i=mean[2], sd2i=sd[2],
>          data=willms)
>
> escalc(measure="MD",n1i=n[1], m1i=mean[1],
>          sd1i=sd[1], n2i=n[3], m2i=mean[3], sd2i=sd[3],
>          data=willms)
>
> escalc(measure="MD",n1i=n[2], m1i=mean[2],
>          sd1i=sd[2], n2i=n[3], m2i=mean[3], sd2i=sd[3],
>          data=willms)
>
> Maybe with Stata?
>
> Thanks in advance for your valuable help!
>
-- 

Dr. rer. nat. Gerta Rücker, Dipl.-Math.

Institute of Medical Biometry and Statistics,
Faculty of Medicine and Medical Center - University of Freiburg

Zinkmattenstr. 6a, D-79108 Freiburg, Germany

Mail:     ruecker using imbi.uni-freiburg.de
Homepage: https://www.uniklinik-freiburg.de/imbi-en/employees.html?imbiuser=ruecker



More information about the R-sig-meta-analysis mailing list