[R-sig-Geo] Building a prediction raster when the statistical model was built from sampling units of different sizes
chris english
englishchristophera at gmail.com
Wed Jun 8 08:41:09 CEST 2016
Nell,
I'm still trying to understand what sounds to me like an embedded data
reduction. Please understand, I don't trap skunks (striped or otherwise). I
have, on many occasions, observed them in the wild but I am cautious not to
make them scared due to the known, smelly results.
Understand as well that I am not versed in capture success, per se, I just
examine data and wonder if it contains generalizable or perhaps surprising
properties.
So if it were me, contrary to my nature and practice of observation,
trapping striped skunks in a 24 km^2 study area of a given land use/land
cover, and I trapped 15 skunks over a period of 2 months, I would deem that
15 observations for that study area/time period.If, in my 32 km^2 study
area of slightly different land cover and different resource availability I
got 70 in two months, I'd have 70 observations. This is how I would view
it, and quite probably within the accepted science I would be going about
it all wrong.
As you present the matter, at least as I understand it, the number of my
hypothetical captures always reduces to one dimension (the study area),
irrespective of the above variance between study areas. This approach
puzzles me as it seems that information about desirable resource
distribution (from the point of view of the skunk) gets lost, and 'capture
success' becomes murky, at least for me.
As my wife always says, "It depends on what the research question is."
What is the research question in this case?
My apologies to you and capture science if I have completely misunderstood
as I all too often do.
Chris
On Tue, Jun 7, 2016 at 5:53 PM, Nelly Reduan <nell.redu at hotmail.fr> wrote:
> Hi Chris,
>
> Thank you very much for your answer.
>
>
> They are striped skunks that have been captured. In my data, all striped
> skunks that have been captured within a same trapping site have the same
> capture success. Thus, each of 50 trapping sites was assigned to one
> capture success. If, I group trapping sites together, I reduce the sampling
> size. As the actuel sampling size (50 trapping sites) is rather small, can
> this cause problem for predicted data estimates?
>
> Thanks very much for your time.
>
> Have a nice day.
>
> Nell
>
>
> ------------------------------
> *De :* chris english <englishchristophera at gmail.com>
> *Envoyé :* jeudi 2 juin 2016 06:10:32
> *À :* Nelly Reduan
> *Cc :* Help R-Sig_Geo
> *Objet :* Re: [R-sig-Geo] Building a prediction raster when the
> statistical model was built from sampling units of different sizes
>
>
> Hi Nell,
>
> Just a couple of questions. Trapping sites range from 24km^2 - 236km^2,
> and there are 50 such sites, looking at the 50 sites might there be a way
> to bin them reasonably into trap area groups?
>
> Your 50 observations suggests one thing was trapped and thereafter
> trapping was discontinued. Is this correct?
>
> And just for general information, what was being trapped?
>
> Sticking closer to your data, you might consider GAM(ing) the bins and
> summing the resultant GAMs. Need to think some more on the predictive
> raster aspect. Sorry for an essentially inconclusive answer.
>
> Chris
>
[[alternative HTML version deleted]]
More information about the R-sig-Geo
mailing list