[R-SIG-Finance] rugarch and fGarch

alexios ghalanos alexios at 4dscape.com
Tue Jun 12 11:07:40 CEST 2012


1. Please examples with reproducible data for such a detailed question. 
SPX.log.ret is not a commom data object found in any of the packages I 
know of.

2. How is the significance much lower? Looking at the Pr(>|t|) column 
they both look very significant across all parameters. The fact that the 
robust s.e. have NaN means that the robust hessian could not be 
calculated indicating that you need to tune the solver/use scaling (set 
'fit.control=list(scale=1)'). Looking at the results, this is likely 
because of the 'gamma' parameter hitting its upper limit.

3. This is a rolling out of sample forecast which means that  you are 
getting rolling estimates using 100 out of sample data points from the 
end of your dataset. As to the "expected" vol in 21 days ROLLING 1 day 
at a time, 'n.ahead=21', you need to pass this argument to the 
as.data.frame method or better still use:
'sigma=as.data.frame(volforecast, which = "sigma")'. This will be 
reverting to its long run mean. I really don't know what you expect as 
being reasonable or not.

-Alexios

On 12/06/2012 08:49, Belgarath wrote:
> Dear All,
>
> first of all thanks for the great package!
>
> I'm trying to get volatility forecasts. So I tried a couple of packages and
> I really like the roll functionality provided within the rugarch package but
> am finding inconsistencies with the results from two garch packages:
>
> 1)
> I run
>
> GA3=garchFit(formula=~arma(1,0)+aparch(1,1),data=SPX.log.ret,cond.dist="sstd")
>
> modeltofit=ugarchspec(variance.model = list(model = "apARCH", garchOrder =
> c(1, 1),
>    submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),
>    mean.model = list(armaOrder = c(1, 0), include.mean = TRUE, archm = FALSE,
>    archpow = 1, arfima = FALSE, external.regressors = NULL, archex = FALSE),
>    distribution.model = "sstd", start.pars = list(), fixed.pars = list())
> GAA3=ugarchfit(spec=modeltofit,data=SPX.log.ret)
>
> As you can see from the results below the parameter coefficients are
> different but similar but the significance is much lower for rugarch. Do you
> know why?
>
> 2)
> I then run
>
> volforecast=ugarchroll(spec=modeltofit, data = last(SPX.log.ret,550),
> n.ahead = 42,
>                         forecast.length = 100, refit.every = 25)
> sigma=as.data.frame(volforecast)
> sigmat<- as.POSIXct(strptime(sigma[,1],format="%Y-%m-%d"))
> sigma2<- xts(sigma[,3],order.by=sigmat)*100*sqrt(252)
>
> And the results seems to me too low to represent the expected vol in 21
> days. Could you please point me in the right direction?
>
> Thank you!
>
>
>
> **********************
> RESULTS
> **********************
>
>
> fGarch----------------------
>> summary(GA3)
>
> Title:
>   GARCH Modelling
>
> Call:
>   garchFit(formula = ~arma(1, 0) + aparch(1, 1), data = SPX.log.ret,
>      cond.dist = "sstd")
>
> Mean and Variance Equation:
>   data ~ arma(1, 0) + aparch(1, 1)
> <environment: 0x000000000c09f038>
>   [data = SPX.log.ret]
>
> Conditional Distribution:
>   sstd
>
> Coefficient(s):
>           mu          ar1        omega       alpha1       gamma1        beta1
>   0.00025599  -0.06942414   0.00011829   0.08504516   0.99999999   0.91557956
>        delta         skew        shape
>   1.11700143   0.86337982   5.35586013
>
> Std. Errors:
>   based on Hessian
>
> Error Analysis:
>           Estimate  Std. Error  t value Pr(>|t|)
> mu      2.560e-04   2.023e-04    1.266 0.205659
> ar1    -6.942e-02   2.332e-02   -2.977 0.002907 **
> omega   1.183e-04   3.481e-05    3.399 0.000677 ***
> alpha1  8.505e-02   1.285e-02    6.616 3.69e-11 ***
> gamma1  1.000e+00   1.441e-02   69.414<  2e-16 ***
> beta1   9.156e-01   1.006e-02   91.041<  2e-16 ***
> delta   1.117e+00   1.962e-01    5.693 1.25e-08 ***
> skew    8.634e-01   2.755e-02   31.337<  2e-16 ***
> shape   5.356e+00   8.347e-01    6.416 1.40e-10 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Log Likelihood:
>   5271.315    normalized:  3.1433
>
> Description:
>   Tue Jun 12 09:02:05 2012 by user: cora
>
>
> Standardised Residuals Tests:
>                                  Statistic p-Value
>   Jarque-Bera Test   R    Chi^2  2459.58   0
>   Shapiro-Wilk Test  R    W      0.9528365 0
>   Ljung-Box Test     R    Q(10)  11.72432  0.3039307
>   Ljung-Box Test     R    Q(15)  15.45374  0.4192542
>   Ljung-Box Test     R    Q(20)  21.50983  0.3676896
>   Ljung-Box Test     R^2  Q(10)  90.12559  5.107026e-15
>   Ljung-Box Test     R^2  Q(15)  91.15075  6.047385e-13
>   Ljung-Box Test     R^2  Q(20)  91.74618  3.664247e-11
>   LM Arch Test       R    TR^2   26.18211  0.01011463
>
> Information Criterion Statistics:
>        AIC       BIC       SIC      HQIC
> -6.275867 -6.246754 -6.275924 -6.265082
>
> ******************************+
> ******************************
>
>
> rugarch--------------------
>> show(GAA3)
>
> *---------------------------------*
> *          GARCH Model Fit        *
> *---------------------------------*
>
> Conditional Variance Dynamics 	
> -----------------------------------
> GARCH Model	: apARCH(1,1)
> Mean Model	: ARFIMA(1,0,0)
> Distribution	: sstd
>
> Optimal Parameters
> ------------------------------------
>          Estimate  Std. Error     t value Pr(>|t|)
> mu      0.000237    0.000190  1.2474e+00 0.212265
> ar1    -0.069601    0.024100 -2.8881e+00 0.003876
> omega   0.000175    0.000148  1.1823e+00 0.237092
> alpha1  0.084114    0.011113  7.5687e+00 0.000000
> beta1   0.920963    0.009835  9.3640e+01 0.000000
> gamma1  1.000000    0.000000  2.6926e+06 0.000000
> delta   1.025983    0.159330  6.4393e+00 0.000000
> skew    0.860581    0.027580  3.1203e+01 0.000000
> shape   5.561683    0.875725  6.3509e+00 0.000000
>
> Robust Standard Errors:
>          Estimate  Std. Error  t value Pr(>|t|)
> mu      0.000237         NaN      NaN      NaN
> ar1    -0.069601         NaN      NaN      NaN
> omega   0.000175         NaN      NaN      NaN
> alpha1  0.084114         NaN      NaN      NaN
> beta1   0.920963         NaN      NaN      NaN
> gamma1  1.000000         NaN      NaN      NaN
> delta   1.025983         NaN      NaN      NaN
> skew    0.860581         NaN      NaN      NaN
> shape   5.561683         NaN      NaN      NaN
>
> LogLikelihood : 5291.85
>
> Information Criteria
> ------------------------------------
>
> Akaike       -6.3004
> Bayes        -6.2712
> Shibata      -6.3004
> Hannan-Quinn -6.2896
>
> Q-Statistics on Standardized Residuals
> ------------------------------------
>        statistic p-value
> Lag10     8.594  0.4756
> Lag15    13.965  0.4523
> Lag20    20.967  0.3386
>
> H0 : No serial correlation
>
> Q-Statistics on Standardized Squared Residuals
> ------------------------------------
>        statistic   p-value
> Lag10     28.13 0.0009072
> Lag15     31.84 0.0042245
> Lag20     35.40 0.0124798
>
> ARCH LM Tests
> ------------------------------------
>               Statistic DoF  P-Value
> ARCH Lag[2]      12.84   2 0.001630
> ARCH Lag[5]      14.26   5 0.014050
> ARCH Lag[10]     28.19  10 0.001683
>
> Nyblom stability test
> ------------------------------------
> Joint Statistic:  NA
> Individual Statistics:
> mu     0.90793
> ar1    0.11145
> omega  0.91076
> alpha1 0.53714
> beta1  0.60241
> gamma1      NA
> delta  0.84958
> skew   0.06079
> shape  0.50963
>
> Asymptotic Critical Values (10% 5% 1%)
> Joint Statistic:     	 2.1 2.32 2.82
> Individual Statistic:	 0.35 0.47 0.75
>
> Sign Bias Test
> ------------------------------------
>                     t-value     prob sig
> Sign Bias           0.7081 0.478964
> Negative Sign Bias  2.7958 0.005236 ***
> Positive Sign Bias  2.7352 0.006301 ***
> Joint Effect       15.8663 0.001208 ***
>
>
> Adjusted Pearson Goodness-of-Fit Test:
> ------------------------------------
>    group statistic p-value(g-1)
> 1    20     53.65    3.733e-05
> 2    30     62.55    2.942e-04
> 3    40     67.52    3.081e-03
> 4    50     86.60    7.431e-04
>
>
> Elapsed time : 4.712
>
> --
> View this message in context: http://r.789695.n4.nabble.com/rugarch-and-fGarch-tp4633077.html
> Sent from the Rmetrics mailing list archive at Nabble.com.
>
> _______________________________________________
> R-SIG-Finance at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-finance
> -- Subscriber-posting only. If you want to post, subscribe first.
> -- Also note that this is not the r-help list where general R questions should go.



More information about the R-SIG-Finance mailing list