[R-SIG-Finance] rugarch and fGarch

Belgarath marco.cora at googlemail.com
Wed Jun 13 15:13:16 CEST 2012


Hello Alexios, 

thank you for the quick reply! Apologies but yesterday yahoo finance was not
working so could not follow up with an appropriate reproducible example:

1)
----
getSymbols("^GSPC", src="yahoo")
SPY.log.ret=ClCl(GSPC)
GA3=garchFit(formula=~arma(1,0)+aparch(1,1),data=last(SPY.log.ret,1371),cond.dist="sstd")
summary(GA3)
modeltofit=ugarchspec(variance.model = list(model = "apARCH", garchOrder =
c(1, 1), 
                    submodel = NULL, external.regressors = NULL,
variance.targeting = FALSE),
                    mean.model = list(armaOrder = c(1, 0), include.mean =
TRUE, archm = FALSE, 
                    archpow = 1, arfima = FALSE, external.regressors = NULL,
archex = FALSE), 
                    distribution.model = "sstd", start.pars = list(),
fixed.pars = list())

GAA3=ugarchfit(spec=modeltofit,data=last(SPY.log.ret,1371))
show(GAA3)
volforecast=ugarchroll(spec=modeltofit,data=last(SPY.log.ret,1371), n.ahead
= 21, 
                       forecast.length = 420, refit.every = 21)
sigma=as.data.frame(volforecast,which="density",n.ahead=21)
sigmat <- as.POSIXct(strptime(sigma[,1],format="%Y-%m-%d"))
sigma2 <- xts(sigma[,3],order.by=sigmat)*100*sqrt(252)
plot(sigma2)
---

Detailed results are below, but to reply to your points:
2) rugarch omega   is 0.000618    t:1.5062e+00 p:0.132023 while fGarch omega
is 3.922e-04   t:3.970  p:7.19e-05 which is more significant.

3) Is the code above usage correct to extract the forecasts? I tried to use
the sigma=as.data.frame(volforecast, which = "sigma") but it only return the
first 21 forecasts. How do I extract the long term mean of the st dev?

4) I have one more question: the dates in the
sigma=as.data.frame(volforecast,which="density",n.ahead=21) are alligned
with the date the forecast refers to no the date the forcast is made (ie. it
will be delayed by 21 days in a chart) correct?

Thank you again for the help and the package!
Marco



*****************
> show(GAA3)

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: apARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: sstd 

Optimal Parameters
------------------------------------
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.000197    0.000007  2.7154e+01 0.000000
ar1    -0.086149    0.000122 -7.0664e+02 0.000000
omega   0.000618    0.000411  1.5062e+00 0.132023
alpha1  0.090424    0.010405  8.6908e+00 0.000000
beta1   0.916128    0.010687  8.5724e+01 0.000000
gamma1  1.000000    0.000000  2.5738e+06 0.000000
delta   0.844145    0.130924  6.4476e+00 0.000000
skew    0.833679    0.028852  2.8895e+01 0.000000
shape   7.325115    1.542399  4.7492e+00 0.000002

Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000197         NaN      NaN      NaN
ar1    -0.086149         NaN      NaN      NaN
omega   0.000618         NaN      NaN      NaN
alpha1  0.090424         NaN      NaN      NaN
beta1   0.916128         NaN      NaN      NaN
gamma1  1.000000         NaN      NaN      NaN
delta   0.844145         NaN      NaN      NaN
skew    0.833679         NaN      NaN      NaN
shape   7.325115         NaN      NaN      NaN

LogLikelihood : 4133.434 

Information Criteria
------------------------------------
                    
Akaike       -6.0167
Bayes        -5.9824
Shibata      -6.0168
Hannan-Quinn -6.0038

Q-Statistics on Standardized Residuals
------------------------------------
      statistic p-value
Lag10     11.45  0.2459
Lag15     16.60  0.2780
Lag20     18.74  0.4737

H0 : No serial correlation

Q-Statistics on Standardized Squared Residuals
------------------------------------
      statistic   p-value
Lag10     29.72 0.0004892
Lag15     33.15 0.0027369
Lag20     36.37 0.0094979

ARCH LM Tests
------------------------------------
             Statistic DoF   P-Value
ARCH Lag[2]      15.81   2 0.0003695
ARCH Lag[5]      16.98   5 0.0045286
ARCH Lag[10]     30.99  10 0.0005890

Nyblom stability test
------------------------------------
Joint Statistic:  NA
Individual Statistics:             
mu     0.2380
ar1    0.2163
omega  0.1923
alpha1 0.1939
beta1  0.2190
gamma1     NA
delta  0.2084
skew   0.1054
shape  0.2543

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 2.1 2.32 2.82
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value     prob sig
Sign Bias           0.3575 0.720737    
Negative Sign Bias  2.5732 0.010180  **
Positive Sign Bias  2.7813 0.005489 ***
Joint Effect       14.4861 0.002313 ***


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     30.47     0.046075
2    30     40.31     0.078949
3    40     54.67     0.049050
4    50     74.99     0.009861


Elapsed time : 5.466 

> summary(GA3)

Title:
 GARCH Modelling 

Call:
 garchFit(formula = ~arma(1, 0) + aparch(1, 1), data = last(SPY.log.ret, 
    1371), cond.dist = "sstd") 

Mean and Variance Equation:
 data ~ arma(1, 0) + aparch(1, 1)
<environment: 0x000000000e8e8e68>
 [data = last(SPY.log.ret, 1371)]

Conditional Distribution:
 sstd 

Coefficient(s):
         mu          ar1        omega       alpha1       gamma1        beta1  
 0.00022015  -0.08726888   0.00039220   0.09300673   0.99999999   0.90917036  
      delta         skew        shape  
 0.95108469   0.83598044   7.13436954  

Std. Errors:
 based on Hessian 

Error Analysis:
         Estimate  Std. Error  t value Pr(>|t|)    
mu      2.202e-04   2.702e-04    0.815 0.415301    
ar1    -8.727e-02   2.557e-02   -3.413 0.000643 ***
omega   3.922e-04   9.879e-05    3.970 7.19e-05 ***
alpha1  9.301e-02   1.157e-02    8.035 8.88e-16 ***
gamma1  1.000e+00   1.085e-02   92.183  < 2e-16 ***
beta1   9.092e-01   1.112e-02   81.759  < 2e-16 ***
delta   9.511e-01   1.667e-01    5.705 1.16e-08 ***
skew    8.360e-01   3.064e-02   27.284  < 2e-16 ***
shape   7.134e+00   1.543e+00    4.625 3.75e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood:
 4131.182    normalized:  3.013262 

Description:
 Wed Jun 13 14:57:49 2012 by user: cora 


Standardised Residuals Tests:
                                Statistic p-Value    
 Jarque-Bera Test   R    Chi^2  1584.761  0          
 Shapiro-Wilk Test  R    W      0.9597795 0          
 Ljung-Box Test     R    Q(10)  12.32339  0.2639963  
 Ljung-Box Test     R    Q(15)  16.8469   0.3280988  
 Ljung-Box Test     R    Q(20)  18.48151  0.5557211  
 Ljung-Box Test     R^2  Q(10)  9.478356  0.4873852  
 Ljung-Box Test     R^2  Q(15)  12.33782  0.6532996  
 Ljung-Box Test     R^2  Q(20)  13.34997  0.8618686  
 LM Arch Test       R    TR^2   29.52316  0.003292551

Information Criterion Statistics:
      AIC       BIC       SIC      HQIC 
-6.013395 -5.979106 -6.013480 -6.000563



--
View this message in context: http://r.789695.n4.nabble.com/rugarch-and-fGarch-tp4633077p4633253.html
Sent from the Rmetrics mailing list archive at Nabble.com.



More information about the R-SIG-Finance mailing list