[R-SIG-Finance] rugarch and fGarch

Belgarath marco.cora at googlemail.com
Tue Jun 12 09:49:39 CEST 2012


Dear All, 

first of all thanks for the great package!

I'm trying to get volatility forecasts. So I tried a couple of packages and
I really like the roll functionality provided within the rugarch package but
am finding inconsistencies with the results from two garch packages:

1)
I run 

GA3=garchFit(formula=~arma(1,0)+aparch(1,1),data=SPX.log.ret,cond.dist="sstd")

modeltofit=ugarchspec(variance.model = list(model = "apARCH", garchOrder =
c(1, 1), 
  submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),
  mean.model = list(armaOrder = c(1, 0), include.mean = TRUE, archm = FALSE, 
  archpow = 1, arfima = FALSE, external.regressors = NULL, archex = FALSE), 
  distribution.model = "sstd", start.pars = list(), fixed.pars = list())
GAA3=ugarchfit(spec=modeltofit,data=SPX.log.ret)

As you can see from the results below the parameter coefficients are
different but similar but the significance is much lower for rugarch. Do you
know why?

2)
I then run 

volforecast=ugarchroll(spec=modeltofit, data = last(SPX.log.ret,550),
n.ahead = 42, 
                       forecast.length = 100, refit.every = 25)
sigma=as.data.frame(volforecast)
sigmat <- as.POSIXct(strptime(sigma[,1],format="%Y-%m-%d"))
sigma2 <- xts(sigma[,3],order.by=sigmat)*100*sqrt(252)

And the results seems to me too low to represent the expected vol in 21
days. Could you please point me in the right direction?

Thank you!



**********************
RESULTS
**********************


fGarch----------------------
> summary(GA3)

Title:
 GARCH Modelling 

Call:
 garchFit(formula = ~arma(1, 0) + aparch(1, 1), data = SPX.log.ret, 
    cond.dist = "sstd") 

Mean and Variance Equation:
 data ~ arma(1, 0) + aparch(1, 1)
<environment: 0x000000000c09f038>
 [data = SPX.log.ret]

Conditional Distribution:
 sstd 

Coefficient(s):
         mu          ar1        omega       alpha1       gamma1        beta1  
 0.00025599  -0.06942414   0.00011829   0.08504516   0.99999999   0.91557956  
      delta         skew        shape  
 1.11700143   0.86337982   5.35586013  

Std. Errors:
 based on Hessian 

Error Analysis:
         Estimate  Std. Error  t value Pr(>|t|)    
mu      2.560e-04   2.023e-04    1.266 0.205659    
ar1    -6.942e-02   2.332e-02   -2.977 0.002907 ** 
omega   1.183e-04   3.481e-05    3.399 0.000677 ***
alpha1  8.505e-02   1.285e-02    6.616 3.69e-11 ***
gamma1  1.000e+00   1.441e-02   69.414  < 2e-16 ***
beta1   9.156e-01   1.006e-02   91.041  < 2e-16 ***
delta   1.117e+00   1.962e-01    5.693 1.25e-08 ***
skew    8.634e-01   2.755e-02   31.337  < 2e-16 ***
shape   5.356e+00   8.347e-01    6.416 1.40e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood:
 5271.315    normalized:  3.1433 

Description:
 Tue Jun 12 09:02:05 2012 by user: cora 


Standardised Residuals Tests:
                                Statistic p-Value     
 Jarque-Bera Test   R    Chi^2  2459.58   0           
 Shapiro-Wilk Test  R    W      0.9528365 0           
 Ljung-Box Test     R    Q(10)  11.72432  0.3039307   
 Ljung-Box Test     R    Q(15)  15.45374  0.4192542   
 Ljung-Box Test     R    Q(20)  21.50983  0.3676896   
 Ljung-Box Test     R^2  Q(10)  90.12559  5.107026e-15
 Ljung-Box Test     R^2  Q(15)  91.15075  6.047385e-13
 Ljung-Box Test     R^2  Q(20)  91.74618  3.664247e-11
 LM Arch Test       R    TR^2   26.18211  0.01011463  

Information Criterion Statistics:
      AIC       BIC       SIC      HQIC 
-6.275867 -6.246754 -6.275924 -6.265082 

******************************+
******************************


rugarch--------------------
> show(GAA3)

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: apARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: sstd 

Optimal Parameters
------------------------------------
        Estimate  Std. Error     t value Pr(>|t|)
mu      0.000237    0.000190  1.2474e+00 0.212265
ar1    -0.069601    0.024100 -2.8881e+00 0.003876
omega   0.000175    0.000148  1.1823e+00 0.237092
alpha1  0.084114    0.011113  7.5687e+00 0.000000
beta1   0.920963    0.009835  9.3640e+01 0.000000
gamma1  1.000000    0.000000  2.6926e+06 0.000000
delta   1.025983    0.159330  6.4393e+00 0.000000
skew    0.860581    0.027580  3.1203e+01 0.000000
shape   5.561683    0.875725  6.3509e+00 0.000000

Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000237         NaN      NaN      NaN
ar1    -0.069601         NaN      NaN      NaN
omega   0.000175         NaN      NaN      NaN
alpha1  0.084114         NaN      NaN      NaN
beta1   0.920963         NaN      NaN      NaN
gamma1  1.000000         NaN      NaN      NaN
delta   1.025983         NaN      NaN      NaN
skew    0.860581         NaN      NaN      NaN
shape   5.561683         NaN      NaN      NaN

LogLikelihood : 5291.85 

Information Criteria
------------------------------------
                    
Akaike       -6.3004
Bayes        -6.2712
Shibata      -6.3004
Hannan-Quinn -6.2896

Q-Statistics on Standardized Residuals
------------------------------------
      statistic p-value
Lag10     8.594  0.4756
Lag15    13.965  0.4523
Lag20    20.967  0.3386

H0 : No serial correlation

Q-Statistics on Standardized Squared Residuals
------------------------------------
      statistic   p-value
Lag10     28.13 0.0009072
Lag15     31.84 0.0042245
Lag20     35.40 0.0124798

ARCH LM Tests
------------------------------------
             Statistic DoF  P-Value
ARCH Lag[2]      12.84   2 0.001630
ARCH Lag[5]      14.26   5 0.014050
ARCH Lag[10]     28.19  10 0.001683

Nyblom stability test
------------------------------------
Joint Statistic:  NA
Individual Statistics:              
mu     0.90793
ar1    0.11145
omega  0.91076
alpha1 0.53714
beta1  0.60241
gamma1      NA
delta  0.84958
skew   0.06079
shape  0.50963

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 2.1 2.32 2.82
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value     prob sig
Sign Bias           0.7081 0.478964    
Negative Sign Bias  2.7958 0.005236 ***
Positive Sign Bias  2.7352 0.006301 ***
Joint Effect       15.8663 0.001208 ***


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     53.65    3.733e-05
2    30     62.55    2.942e-04
3    40     67.52    3.081e-03
4    50     86.60    7.431e-04


Elapsed time : 4.712 

--
View this message in context: http://r.789695.n4.nabble.com/rugarch-and-fGarch-tp4633077.html
Sent from the Rmetrics mailing list archive at Nabble.com.



More information about the R-SIG-Finance mailing list