[R-SIG-Finance] R: [Fwd: R-SIG-Finance Digest, Vol 60, Issue 18]

Steven Archambault archstevej at gmail.com
Tue May 19 21:16:30 CEST 2009


Oh, you are right. Here is the correct file. I sure have botched this query,
thanks for catching it Robert! Sorry for so many posts to the list.

Regards,
Steve



On Tue, May 19, 2009 at 12:19 PM, Robert Iquiapaza <rbali at ufmg.br> wrote:

>  Stev,
>
> The data you provided is not complete, lagdlfdi and laglnstock2000 are not
> in the csv file
>
> Robert
>
>  *From:* Steven Archambault <archstevej at gmail.com>
> *Sent:* Monday, May 18, 2009 5:06 PM
> *To:* Millo Giovanni <Giovanni_Millo at generali.com>
> *Cc:* r-sig-finance at stat.math.ethz.ch ; Yves Croissant<yves.croissant at let.ish-lyon.cnrs.fr>; Christian
> Kleiber <christian.kleiber at unibas.ch>
> *Subject:* Re: [R-SIG-Finance] R: [Fwd: R-SIG-Finance Digest, Vol 60,
> Issue 18]
>
> I just realized I used Robust in my Stata 9.2 analysis. When I remove this,
> the Chi-sq values are much closer to the values I get in R (but negative, as
> the consistent model must be listed first in a chi-sq calculation). However,
> with my own data I do get this positive definite error in Stata. Is this a
> result of unbalanced data? R doesn't give an error, so I am inclined to
> ignore it in Stata. I am posting my own results from R and Stata, and
> attaching the data as a csv.
>
> Thanks, hope I am not wasting too much of your time here.
>
> -Steve
>
> ###R-Output###
> > library("plm")
> >
> > fdi <- read.csv("C:/data/mydata.csv", na.strings=".")
> > fdiplm<-plm.data(fdi, index = c("id_code_id", "year"))
> series    are constants and have been removed
> >
> > fdi_test<-(lfdi_2000~ lagdlfdi+ laglnstock2000+ lagtradegdp +lagdlgdp)
> >
> > fdi_test_fe <- plm(fdi_test, data=fdiplm, model="within")
> > fdi_test_re <- plm(fdi_test, data=fdiplm, model="random")
> >
> > summary (fdi_test_fe)
> Oneway (individual) effect Within Model
>
> Call:
> plm(formula = fdi_test, data = fdiplm, model = "within")
>
> Unbalanced Panel: n=149, T=3-27, N=2697
>
> Residuals :
>    Min. 1st Qu.  Median 3rd Qu.    Max.
> -8.2100 -0.4760  0.0452  0.5670  4.8700
>
> Coefficients :
>                 Estimate Std. Error t-value  Pr(>|t|)
> lagdlfdi       0.1564759  0.0180645  8.6621 < 2.2e-16 ***
> laglnstock2000 0.7621350  0.0246798 30.8809 < 2.2e-16 ***
> lagtradegdp    0.0178568  0.0025859  6.9055 5.003e-12 ***
> lagdlgdp       0.2601477  0.0427744  6.0818 1.188e-09 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Total Sum of Squares:    4606.7
> Residual Sum of Squares: 2938
> F-statistic: 361.237 on 4 and 2544 DF, p-value: < 2.22e-16
> > summary (fdi_test_re)
> Oneway (individual) effect Random Effect Model
>    (Swamy-Arora's transformation)
>
> Call:
> plm(formula = fdi_test, data = fdiplm, model = "random")
>
> Unbalanced Panel: n=149, T=3-27, N=2697
>
> Effects:
>                   var std.dev  share
> idiosyncratic 1.15487 1.07465 0.6617
> individual    0.59044 0.76840 0.3383
> theta  :
>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
>  0.3718  0.6700  0.7081  0.6955  0.7355  0.7401
>
> Residuals :
>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
> -9.15000 -0.47900  0.07270 -0.00713  0.59800  3.95000
>
> Coefficients :
>                  Estimate Std. Error  t-value  Pr(>|t|)
> (Intercept)    16.7744214  0.1552868 108.0222 < 2.2e-16 ***
> lagdlfdi        0.1632388  0.0181005   9.0185 < 2.2e-16 ***
> laglnstock2000  0.8314432  0.0196444  42.3247 < 2.2e-16 ***
> lagtradegdp     0.0119453  0.0020737   5.7605 8.386e-09 ***
> lagdlgdp        0.2558009  0.0424599   6.0245 1.696e-09 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Total Sum of Squares:    9522.3
> Residual Sum of Squares: 3140.8
> F-statistic: 1367.42 on 4 and 2692 DF, p-value: < 2.22e-16
> >
> > phtest(fdi_test_re, fdi_test_fe)
>
>         Hausman Test
>
> data:  fdi_test
> chisq = 23.7021, df = 4, p-value = 9.164e-05
> alternative hypothesis: one model is inconsistent
>
>
> ###end R output###
>
> ###Stata 9.2 Output--canned###
> xtreg lfdi_2000 lagdlfdi laglnstock2000 lagtradegdp lagdlgdp, fe;
>
> Fixed-effects (within) regression               Number of obs      =
> 2697
> Group variable (i): id_code_id                  Number of groups   =
> 149
>
> R-sq:  within  = 0.3622                         Obs per group: min
> =         3
>        between = 0.8234                                        avg =
> 18.1
>        overall = 0.6998                                        max =
> 27
>
>                                                 F(4,2544)          =
> 361.24
> corr(u_i, Xb)  = 0.3536                         Prob > F           =
> 0.0000
>
>
> ------------------------------------------------------------------------------
>    lfdi_2000 |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
> Interval]
>
> -------------+----------------------------------------------------------------
>     lagdlfdi |   .1564758   .0180645     8.66   0.000     .1210532
> .1918985
> laglnst~2000 |    .762135   .0246798    30.88   0.000     .7137404
> .8105295
>  lagtradegdp |   .0178568   .0025859     6.91   0.000     .0127861
> .0229274
>     lagdlgdp |   .2601478   .0427744     6.08   0.000     .1762716
> .3440241
>        _cons |   17.01131   .1701713    99.97   0.000     16.67762
> 17.345
>
> -------------+----------------------------------------------------------------
>      sigma_u |  .93048942
>      sigma_e |  1.0746505
>          rho |  .42847396   (fraction of variance due to u_i)
>
> ------------------------------------------------------------------------------
> F test that all u_i=0:     F(148, 2544) =    10.73           Prob > F =
> 0.0000
>
> . estimates store FIX, title(The FE) ;
>
> . xtreg lfdi_2000 lagdlfdi laglnstock2000 lagtradegdp lagdlgdp, re;
>
> Random-effects GLS regression                   Number of obs      =
> 2697
> Group variable (i): id_code_id                  Number of groups   =
> 149
>
> R-sq:  within  = 0.3606                         Obs per group: min
> =         3
>        between = 0.8402                                        avg =
> 18.1
>        overall = 0.7128                                        max =
> 27
>
> Random effects u_i ~ Gaussian                   Wald chi2(4)       =
> 2225.46
> corr(u_i, X)       = 0 (assumed)                Prob > chi2        =
> 0.0000
>
>
> ------------------------------------------------------------------------------
>    lfdi_2000 |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
> Interval]
>
> -------------+----------------------------------------------------------------
>     lagdlfdi |   .1631662   .0180937     9.02   0.000     .1277032
> .1986291
> laglnst~2000 |    .830845   .0196843    42.21   0.000     .7922645
> .8694255
>  lagtradegdp |    .011992   .0020779     5.77   0.000     .0079195
> .0160645
>     lagdlgdp |   .2558113   .0424486     6.03   0.000     .1726136
> .3390091
>        _cons |   16.77702   .1556693   107.77   0.000     16.47191
> 17.08212
>
> -------------+----------------------------------------------------------------
>      sigma_u |  .77431228
>      sigma_e |  1.0746505
>          rho |  .34173973   (fraction of variance due to u_i)
>
> ------------------------------------------------------------------------------
>
> .  estimates store RAND, title(The RE) ;
>
> . hausman FIX RAND;
>
>                  ---- Coefficients ----
>              |      (b)          (B)            (b-B)
> sqrt(diag(V_b-V_B))
>              |      FIX          RAND        Difference          S.E.
>
> -------------+----------------------------------------------------------------
>     lagdlfdi |    .1564758     .1631662       -.0066903               .
> laglnst~2000 |     .762135      .830845         -.06871         .014887
>  lagtradegdp |    .0178568      .011992        .0058648        .0015393
>     lagdlgdp |    .2601478     .2558113        .0043365        .0052695
>
> ------------------------------------------------------------------------------
>                            b = consistent under Ho and Ha; obtained from
> xtreg
>             B = inconsistent under Ha, efficient under Ho; obtained from
> xtreg
>
>     Test:  Ho:  difference in coefficients not systematic
>
>                   chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)
>                           =       22.94
>                 Prob>chi2 =      0.0001
>                 (V_b-V_B is not positive definite)
> ###End Stata 9.2####
>
>
>
>
>
>
>
> On Mon, May 18, 2009 at 12:26 PM, Steven Archambault <archstevej at gmail.com
> > wrote:
>
>> Giovani,
>>
>> Thank you so much for your comments. I am a bit new to R, and to these
>> mailing lists, so I apologize for being sparse on the details and examples.
>> I am using Stata 9.2, which might be the answer to my problem, as you
>> described. I have done quite a bit of internet searching, and did not read
>> anywhere about the use of a different method for calculating the chi-sq
>> value, so thanks for that.
>>
>>  One more issue I have been thinking about. I am assuming your Plm
>> package knows that the FE is the consistient model, as the same results
>> arrive if the code is phtest(femod, remod) or phtest(remod, femod). The
>> order does matter in Stata.
>>
>> For complteness I am going to post my results using the same Grumfeld
>> dataset for both stata 9.2 (by hand calculation and canned procedure) and
>> R.  I am using the Plm package version 1 1-2.
>>
>> Regards,
>> Steve
>>
>>
>>
>>  ## begin Stata9.2 output##
>> xtreg inv value capital, robust re;
>>
>> Random-effects GLS regression                   Number of obs      =
>> 200
>> Group variable (i): firmid                      Number of groups
>> =        10
>>
>> R-sq:  within  = 0.7668                         Obs per group: min
>> =        20
>>        between = 0.8196                                        avg =
>> 20.0
>>        overall = 0.8061                                        max
>> =        20
>>
>> Random effects u_i ~ Gaussian                   Wald chi2(3)       =
>> 77.70
>>
>> corr(u_i, X)       = 0 (assumed)                Prob > chi2        =
>> 0.0000
>>
>>
>> ------------------------------------------------------------------------------
>>              |               Robust
>>       invest |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
>> Interval]
>>
>> -------------+----------------------------------------------------------------
>>        value |   .1097811   .0197587     5.56   0.000     .0710547
>> .1485076
>>      capital |    .308113   .0418387     7.36   0.000     .2261107
>> .3901153
>>        _cons |  -57.83441   24.67795    -2.34   0.019    -106.2023
>> -9.466507
>>
>> -------------+----------------------------------------------------------------
>>
>>      sigma_u |   84.20095
>>      sigma_e |  52.767964
>>          rho |  .71800838   (fraction of variance due to u_i)
>>
>> ------------------------------------------------------------------------------
>>
>> . matrix bfe=e(b);
>>
>> . matrix vfe=e(V);
>>
>> . estimates store remod;
>>
>> . xtreg inv value capital, robust fe;
>>
>> Fixed-effects (within) regression               Number of obs      =
>> 200
>> Group variable (i): firmid                      Number of groups
>> =        10
>>
>> R-sq:  within  = 0.7668                         Obs per group: min
>> =        20
>>        between = 0.8194                                        avg =
>> 20.0
>>        overall = 0.8060                                        max
>> =        20
>>
>>                                                 F(2,188)           =
>> 40.23
>>
>> corr(u_i, Xb)  = -0.1517                        Prob > F           =
>> 0.0000
>>
>> ------------------------------------------------------------------------------
>>              |               Robust
>>       invest |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
>> Interval]
>>
>> -------------+----------------------------------------------------------------
>>        value |   .1101238    .019378     5.68   0.000     .0718975
>> .1483501
>>      capital |   .3100653    .042795     7.25   0.000     .2256452
>> .3944854
>>        _cons |  -58.74393   23.37422    -2.51   0.013    -104.8534
>> -12.63449
>> -------------+----------------------------------------------------------------
>>
>>      sigma_u |  85.732501
>>      sigma_e |  52.767964
>>          rho |  .72525012   (fraction of variance due to u_i)
>>
>> ------------------------------------------------------------------------------
>>
>>  ###Hausman by hand###
>>
>> . estimates store femod;
>>
>> . matrix vre=e(V);
>>
>> . matrix bre=e(b);
>>
>> . matrix bdif=bfe-bre;
>>
>> . matrix list bdif;
>>
>> bdif[1,3]
>>          value     capital       _cons
>> y1  -.00034265  -.00195236   .90952273
>>
>> . matrix bdifp=bdif';
>>
>> . matrix dv=vfe-vre;
>>
>> . matrix dvi=inv(dv);
>>
>> . matrix list bdif;
>>
>> bdif[1,3]
>>          value     capital       _cons
>> y1  -.00034265  -.00195236   .90952273
>>
>> . matrix list bdifp;
>>
>> bdifp[3,1]
>>                  y1
>>   value  -.00034265
>> capital  -.00195236
>>   _cons   .90952273
>>
>> . matrix list dvi;
>>
>> symmetric dvi[3,3]
>>               value     capital       _cons
>>   value  -7739.3615
>> capital   5808.2905   -5305.811
>>   _cons   3.6641311   .98569198  -.00051157
>>
>> . matrix chisq=bdif*dvi*bdifp;
>>
>> . matrix list chisq;
>>
>> symmetric chisq[1,1]
>>             y1
>> y1  -.01956929
>> ###Hausman canned###
>> .  hausman femod remod;
>>
>>                  ---- Coefficients ----
>>              |      (b)          (B)            (b-B)
>> sqrt(diag(V_b-V_B))
>>              |     femod        remod        Difference          S.E.
>>
>> -------------+----------------------------------------------------------------
>>        value |    .1101238     .1097811        .0003427               .
>>      capital |    .3100653      .308113        .0019524        .0089965
>> ------------------------------------------------------------------------------
>>
>>                            b = consistent under Ho and Ha; obtained from
>> xtreg
>>             B = inconsistent under Ha, efficient under Ho; obtained from
>> xtreg
>>
>>     Test:  Ho:  difference in coefficients not systematic
>>
>>                   chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
>>                           =    -0.01    chi2<0 ==> model fitted on these
>>                                         data fails to meet the asymptotic
>>                                         assumptions of the Hausman test;
>>                                         see suest for a generalized test ##
>> end Stata9.2 output ##
>>
>> ##begin Output R, using PLM 1.1-2###
>>
>> > test<-data(Grunfeld, package="Ecdat")
>> >
>> > fm <- inv~value+capital
>> > femod <- plm(fm, Grunfeld, model="within")
>> > summary(femod)
>> Oneway (individual) effect Within Model
>>
>> Call:
>> plm(formula = fm, data = Grunfeld, model = "within")
>>
>> Balanced Panel: n=10, T=20, N=200
>>
>> Residuals :
>>     Min.  1st Qu.   Median  3rd Qu.     Max.
>> -184.000  -17.600    0.563   19.200  251.000
>>
>> Coefficients :
>>         Estimate Std. Error t-value  Pr(>|t|)
>> value   0.110124   0.011857  9.2879 < 2.2e-16 ***
>> capital 0.310065   0.017355 17.8666 < 2.2e-16 ***
>> ---
>> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>>
>> Total Sum of Squares:    2244400
>> Residual Sum of Squares: 523480
>> F-statistic: 309.014 on 2 and 188 DF, p-value: < 2.22e-16
>>
>> > remod <- plm(fm, Grunfeld, model="random")
>> > summary(remod)
>> Oneway (individual) effect Random Effect Model
>>    (Swamy-Arora's transformation)
>>
>> Call:
>> plm(formula = fm, data = Grunfeld, model = "random")
>>
>> Balanced Panel: n=10, T=20, N=200
>>
>> Effects:
>>                    var  std.dev share
>> idiosyncratic 2784.458   52.768 0.282
>> individual    7089.800   84.201 0.718
>> theta:  0.86122
>>
>> Residuals :
>>    Min. 1st Qu.  Median 3rd Qu.    Max.
>> -178.00  -19.70    4.69   19.50  253.00
>>
>> Coefficients :
>>               Estimate Std. Error t-value Pr(>|t|)
>> (Intercept) -57.834415  28.898935 -2.0013  0.04536 *
>> value         0.109781   0.010493 10.4627  < 2e-16 ***
>> capital       0.308113   0.017180 17.9339  < 2e-16 ***
>> ---
>> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>>
>> Total Sum of Squares:    2381400
>> Residual Sum of Squares: 548900
>> F-statistic: 328.837 on 2 and 197 DF, p-value: < 2.22e-16
>> > phtest(femod, remod)
>>
>>         Hausman Test
>>
>> data:  fm
>> chisq = 2.3304, df = 2, p-value = 0.3119
>> alternative hypothesis: one model is inconsistent
>>
>> ###end Plm###
>>
>>
>>
>>
>>
>>   On Mon, May 18, 2009 at 6:01 AM, Millo Giovanni <
>> Giovanni_Millo at generali.com> wrote:
>>
>>> Dear Steve,
>>>
>>> I got your inquiry courtesy of Christian Kleiber, who brought it to our
>>> attention: please next time you post anything re a given package,
>>> include the maintainer's address. We cannot guarantee to parse all the
>>> daily digests of the R system!
>>>
>>> Your problem: can you please provide a reproducible example? Else it is
>>> difficult to help, not knowing your data, your results and even the
>>> Stata version you're using.
>>>
>>> In the following I replicate what you might have done on a well-known
>>> dataset.
>>>
>>> From Stata10, on the usual Grunfeld data taken from package "Ecdat":
>>>
>>> ## begin Stata10 output ##
>>> . xtreg inv value capital
>>>
>>> Random-effects GLS regression                   Number of obs      =
>>> 200
>>> Group variable: firm                            Number of groups   =
>>> 10
>>>
>>> R-sq:  within  = 0.7668                         Obs per group: min =
>>> 20
>>>       between = 0.8196                                        avg =
>>> 20.0
>>>       overall = 0.8061                                        max =
>>> 20
>>>
>>> Random effects u_i ~ Gaussian                   Wald chi2(2)       =
>>> 657.67
>>> corr(u_i, X)       = 0 (assumed)                Prob > chi2        =
>>> 0.0000
>>>
>>> ------------------------------------------------------------------------
>>> ------
>>>         inv |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
>>> Interval]
>>> -------------+----------------------------------------------------------
>>> ------
>>>       value |   .1097811   .0104927    10.46   0.000     .0892159
>>> .1303464
>>>     capital |    .308113   .0171805    17.93   0.000     .2744399
>>> .3417861
>>>       _cons |  -57.83441   28.89893    -2.00   0.045    -114.4753
>>> -1.193537
>>> -------------+----------------------------------------------------------
>>> ------
>>>     sigma_u |   84.20095
>>>     sigma_e |  52.767964
>>>         rho |  .71800838   (fraction of variance due to u_i)
>>> ------------------------------------------------------------------------
>>> ------
>>>
>>> . estimates store remod
>>>
>>> . xtreg inv value capital, fe
>>>
>>> Fixed-effects (within) regression               Number of obs      =
>>> 200
>>> Group variable: firm                            Number of groups   =
>>> 10
>>>
>>> R-sq:  within  = 0.7668                         Obs per group: min =
>>> 20
>>>       between = 0.8194                                        avg =
>>> 20.0
>>>       overall = 0.8060                                        max =
>>> 20
>>>
>>>                                                F(2,188)           =
>>> 309.01
>>> corr(u_i, Xb)  = -0.1517                        Prob > F           =
>>> 0.0000
>>>
>>> ------------------------------------------------------------------------
>>> ------
>>>         inv |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
>>> Interval]
>>> -------------+----------------------------------------------------------
>>> ------
>>>       value |   .1101238   .0118567     9.29   0.000     .0867345
>>> .1335131
>>>     capital |   .3100653   .0173545    17.87   0.000     .2758308
>>> .3442999
>>>       _cons |  -58.74393   12.45369    -4.72   0.000    -83.31086
>>> -34.177
>>> -------------+----------------------------------------------------------
>>> ------
>>>     sigma_u |  85.732501
>>>     sigma_e |  52.767964
>>>         rho |  .72525012   (fraction of variance due to u_i)
>>> ------------------------------------------------------------------------
>>> ------
>>> F test that all u_i=0:     F(9, 188) =    49.18              Prob > F =
>>> 0.0000
>>>
>>> . estimates store femod
>>>
>>> . hausman femod remod
>>>
>>>                 ---- Coefficients ----
>>>             |      (b)          (B)            (b-B)
>>> sqrt(diag(V_b-V_B))
>>>             |     femod        remod        Difference          S.E.
>>> -------------+----------------------------------------------------------
>>> ------
>>>       value |    .1101238     .1097811        .0003427        .0055213
>>>     capital |    .3100653      .308113        .0019524        .0024516
>>> ------------------------------------------------------------------------
>>> ------
>>>                           b = consistent under Ho and Ha; obtained from
>>> xtreg
>>>            B = inconsistent under Ha, efficient under Ho; obtained from
>>> xtreg
>>>
>>>    Test:  Ho:  difference in coefficients not systematic
>>>
>>>                  chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
>>>                          =        2.33
>>>                Prob>chi2 =      0.3119
>>>
>>> .
>>> ## end Stata10 output ##
>>>
>>> while from plm I get
>>>
>>> ## begin R putput ##
>>> > data(Grunfeld, package="Ecdat")
>>> > fm <- inv~value+capital
>>> >
>>> > femod <- plm(fm, Grunfeld)
>>> > remod <- plm(fm, Grunfeld, model="random")
>>> >
>>> > phtest(femod, remod)
>>>
>>>        Hausman Test
>>>
>>> data:  fm
>>> chisq = 2.3304, df = 2, p-value = 0.3119
>>> alternative hypothesis: one model is inconsistent
>>>
>>> ## end R output ##
>>>
>>> which, besides testifying to the goodness and parsimony of an
>>> object-oriented approach as far as screen output is concerned, looks
>>> rather consistent to me.
>>>
>>> I cannot but guess that the problem might stem from different RE
>>> estimates: previous versions of Stata used the Wallace-Hussein method by
>>> default for computing the variance of random effects. Now Stata uses
>>> Swamy-Arora, which has been the default of 'plm' since the beginning.
>>> Yet as plm() allows to choose, you can experiment with different values
>>> for the 'random.method' argument in order to see if you get the Stata
>>> result. I suggest you start by comparing the coefficient estimates you
>>> get from Stata and R: FE should be unambiguous, RE might vary as said
>>> above, and for good reason.
>>>
>>> You also didn't tell us whether your by-hand calculation agrees with
>>> phtest() output? (I guess it does not)
>>>
>>> Please let us know, possibly with a reproducible example and providing
>>> all the above info
>>> Giovanni
>>>
>>> PS please also make sure you're not using any VEEEEERY old version of
>>> 'plm' (prior to, say, 0.3): these had a bug in the p-value calculation
>>> which made it depend on the order of models compared (so that in the
>>> wrong case you got p.value=1).
>>>
>>> Giovanni Millo
>>> Research Dept.,
>>> Assicurazioni Generali SpA
>>> Via Machiavelli 4,
>>> 34132 Trieste (Italy)
>>> tel. +39 040 671184
>>> fax  +39 040 671160
>>>
>>> > ----------------------------------------------------------------------
>>> > --
>>> >
>>> > Subject:
>>> > [R-SIG-Finance] Chi-sq Hausman test---R vs Stata
>>> > From:
>>> > Steven Archambault <archstevej at gmail.com>
>>> > Date:
>>> > Sun, 17 May 2009 23:14:13 -0600
>>> > To:
>>> > r-sig-finance at stat.math.ethz.ch
>>> >
>>> > To:
>>> > r-sig-finance at stat.math.ethz.ch
>>> >
>>> >
>>> > Hi all,
>>> >
>>> > I am running a panel time series regression testing Fixed Effects and
>>> > Random Effects. I decided to calculate the chi-sq value for the
>>> > Hausman test in both R (Phtest) and Stata. I get different results.
>>> > Even within Stata, calculating the Chi-sq value with the canned
>>> > procedure or by hand (using
>>> > matrices) gives different results. So, the question should come up
>>> there as
>>> > well.
>>> >
>>> > Does anybody have any insight on how to pick which results to use? I
>>> > guess the one that gives the result I want? Having different programs
>>> > give quite different values for the same tests is frustrating me.  I'd
>>>
>>> > be interested in any feedback folks have!
>>> >
>>> > Thanks,
>>> > Steve
>>> >
>>> >       [[alternative HTML version deleted]]
>>>
>>
>>
>  ------------------------------
>
> _______________________________________________
> R-SIG-Finance at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-finance
> -- Subscriber-posting only.
> -- If you want to post, subscribe first.
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://stat.ethz.ch/pipermail/r-sig-finance/attachments/20090519/79bfa6cf/attachment.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: fdi_data.csv
Type: application/vnd.ms-excel
Size: 284237 bytes
Desc: not available
URL: <https://stat.ethz.ch/pipermail/r-sig-finance/attachments/20090519/79bfa6cf/attachment.xlb>


More information about the R-SIG-Finance mailing list