[R] How to generate SE for the proportion value using a randomization process in R?

Rui Barradas ru|pb@rr@d@@ @end|ng |rom @@po@pt
Thu Jan 28 23:47:07 CET 2021


Hello,

Yes, sorry for my previous post, I had forgotten about boot.array.
That's a much better solution for your problem.

Rui Barradas

Às 20:29 de 28/01/21, Marna Wagley escreveu:
> Thank you Rui,
> This is great. How about the following?
> 
> SimilatedData<-boot.array(b, indices=T)
> 
> seems it is giving the rows ID which are used in the calculation, isn't it?
> 
> 
> 
> 
> On Thu, Jan 28, 2021 at 12:21 PM Rui Barradas <ruipbarradas using sapo.pt 
> <mailto:ruipbarradas using sapo.pt>> wrote:
> 
>     Hello,
> 
>     I don't know why you would need to see the indices but rewrite the
>     function bootprop as
> 
>     bootprop_ind <- function(data, index){
>         d <- data[index, ]
>         #sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]], na.rm = TRUE)
>         index
>     }
> 
> 
>     and call in the same way. It will now return a matrix of indices with R
>     = 1000 rows and 19 columns.
> 
>     Hope this helps,
> 
>     Rui Barradas
> 
> 
>     Às 19:29 de 28/01/21, Marna Wagley escreveu:
>      > Hi Rui,
>      > I am sorry for asking you several questions.
>      >
>      > In the given example, randomizations (reshuffle) were done 1000
>     times,
>      > and its 1000 proportion values (results) are stored and it can be
>     seen
>      > using b$t; but I was wondering how the table was randomized
>     (which rows
>      > have been missed/or repeated in each randomizing procedure?).
>      >
>      > Is there any way we can see the randomized table and its associated
>      > results? Here in this example, I randomized (or bootstrapped) the
>     table
>      > into three times (R=3) so I would like to store these three
>     tables and
>      > look at them later to know which rows were repeated/missed. Is
>     there any
>      > possibility?
>      > The example data and the code is given below.
>      >
>      > Thank you for your help.
>      >
>      > ####
>      > library(boot)
>      > dat<-structure(list(Sample = structure(c(1L, 12L, 13L, 14L, 15L, 16L,
>      > 17L, 18L, 19L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L), .Label
>     = c("id1",
>      > "id10", "id11", "id12", "id13", "id14", "id15", "id16", "id17",
>      > "id18", "id19", "Id2", "id3", "id4", "id5", "id6", "id7", "id8",
>      > "id9"), class = "factor"), Time1 = c(0L, 1L, 1L, 1L, 0L, 0L,
>      > 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L), Time2 = c(1L,
>      > 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L,
>      > 1L, 1L)), .Names = c("Sample", "Time1", "Time2"), class =
>     "data.frame",
>      > row.names = c(NA,
>      > -19L))
>      > daT<-data.frame(dat %>%
>      >    mutate(Time1.but.not.in.Time2 = case_when(
>      >              Time1 %in% "1" & Time2 %in% "0"  ~ "1"),
>      > Time2.but.not.in.Time1 = case_when(
>      >              Time1 %in% "0" & Time2 %in% "1"  ~ "1"),
>      >   BothTimes = case_when(
>      >              Time1 %in% "1" & Time2 %in% "1"  ~ "1")))
>      > cols.num <- c("Time1.but.not.in.Time2","Time2.but.not.in.Time1",
>      > "BothTimes")
>      > daT[cols.num] <- sapply(daT[cols.num],as.numeric)
>      > summary(daT)
>      >
>      > bootprop <- function(data, index){
>      >     d <- data[index, ]
>      >     sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]], na.rm =
>     TRUE)
>      > }
>      >
>      > R <- 3
>      > set.seed(2020)
>      > b <- boot(daT, bootprop, R)
>      > b
>      > b$t0     # original
>      > b$t
>      > sd(b$t)  # bootstrapped estimate of the SE of the sample prop.
>      > hist(b$t, freq = FALSE)
>      >
>      > str(b)
>      > b$data
>      > b$seed
>      > b$sim
>      > b$strata
>      > ################
>      >
>      >
>      > On Sat, Jan 23, 2021 at 12:36 AM Marna Wagley
>     <marna.wagley using gmail.com <mailto:marna.wagley using gmail.com>
>      > <mailto:marna.wagley using gmail.com <mailto:marna.wagley using gmail.com>>>
>     wrote:
>      >
>      >     Yes Rui, I can see we don't need to divide by square root of
>     sample
>      >     size. The example is great to understand it.
>      >     Thank you.
>      >     Marna
>      >
>      >
>      >     On Sat, Jan 23, 2021 at 12:28 AM Rui Barradas
>     <ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>
>      >     <mailto:ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>>>
>     wrote:
>      >
>      >         Hello,
>      >
>      >         Inline.
>      >
>      >         Às 07:47 de 23/01/21, Marna Wagley escreveu:
>      >          > Dear Rui,
>      >          > I was wondering whether we have to square root of SD
>     to find
>      >         SE, right?
>      >
>      >         No, we don't. var already divides by n, don't divide again.
>      >         This is the code, that can be seen by running the
>     function name
>      >         at a
>      >         command line.
>      >
>      >
>      >         sd
>      >         #function (x, na.rm = FALSE)
>      >         #sqrt(var(if (is.vector(x) || is.factor(x)) x else
>     as.double(x),
>      >         #    na.rm = na.rm))
>      >         #<bytecode: 0x55f3ce900848>
>      >         #<environment: namespace:stats>
>      >
>      >
>      >
>      >          >
>      >          > bootprop <- function(data, index){
>      >          >     d <- data[index, ]
>      >          >     sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]],
>      >         na.rm = TRUE)
>      >          > }
>      >          >
>      >          > R <- 1e3
>      >          > set.seed(2020)
>      >          > b <- boot(daT, bootprop, R)
>      >          > b
>      >          > b$t0     # original
>      >          > sd(b$t)  # bootstrapped estimate of the SE of the
>     sample prop.
>      >          > sd(b$t)/sqrt(1000)
>      >          > pandit*(1-pandit)
>      >          >
>      >          > hist(b$t, freq = FALSE)
>      >
>      >
>      >         Try plotting the normal densities for both cases, the red
>     line is
>      >         clearly wrong.
>      >
>      >
>      >         f <- function(x, xbar, s){
>      >             dnorm(x, mean = xbar, sd = s)
>      >         }
>      >
>      >         hist(b$t, freq = FALSE)
>      >         curve(f(x, xbar = b$t0, s = sd(b$t)), from = 0, to = 1, col =
>      >         "blue",
>      >         add = TRUE)
>      >         curve(f(x, xbar = b$t0, s = sd(b$t)/sqrt(R)), from = 0,
>     to = 1,
>      >         col =
>      >         "red", add = TRUE)
>      >
>      >
>      >         Hope this helps,
>      >
>      >         Rui Barradas
>      >
>      >          >
>      >          >
>      >          >
>      >          >
>      >          > On Fri, Jan 22, 2021 at 3:07 PM Rui Barradas
>      >         <ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>
>     <mailto:ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>>
>      >          > <mailto:ruipbarradas using sapo.pt
>     <mailto:ruipbarradas using sapo.pt> <mailto:ruipbarradas using sapo.pt
>     <mailto:ruipbarradas using sapo.pt>>>>
>      >         wrote:
>      >          >
>      >          >     Hello,
>      >          >
>      >          >     Something like this, using base package boot?
>      >          >
>      >          >
>      >          >     library(boot)
>      >          >
>      >          >     bootprop <- function(data, index){
>      >          >         d <- data[index, ]
>      >          >         sum(d[["BothTimes"]], na.rm =
>     TRUE)/sum(d[["Time1"]],
>      >         na.rm = TRUE)
>      >          >     }
>      >          >
>      >          >     R <- 1e3
>      >          >     set.seed(2020)
>      >          >     b <- boot(daT, bootprop, R)
>      >          >     b
>      >          >     b$t0     # original
>      >          >     sd(b$t)  # bootstrapped estimate of the SE of the
>     sample
>      >         prop.
>      >          >     hist(b$t, freq = FALSE)
>      >          >
>      >          >
>      >          >     Hope this helps,
>      >          >
>      >          >     Rui Barradas
>      >          >
>      >          >     Às 21:57 de 22/01/21, Marna Wagley escreveu:
>      >          >      > Hi All,
>      >          >      > I was trying to estimate standard error (SE)
>     for the
>      >         proportion
>      >          >     value using
>      >          >      > some kind of randomization process
>     (bootstrapping or
>      >         jackknifing)
>      >          >     in R, but
>      >          >      > I could not figure it out.
>      >          >      >
>      >          >      > Is there any way to generate SE for the proportion?
>      >          >      >
>      >          >      > The example of the data and the code I am using is
>      >         attached for your
>      >          >      > reference. I would like to generate the value of
>      >         proportion with
>      >          >     a SE using
>      >          >      > a 1000 times randomization.
>      >          >      >
>      >          >      > dat<-structure(list(Sample = structure(c(1L,
>     12L, 13L,
>      >         14L, 15L, 16L,
>      >          >      > 17L, 18L, 19L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
>      >         11L), .Label
>      >          >     = c("id1",
>      >          >      > "id10", "id11", "id12", "id13", "id14", "id15",
>      >         "id16", "id17",
>      >          >      > "id18", "id19", "Id2", "id3", "id4", "id5", "id6",
>      >         "id7", "id8",
>      >          >      > "id9"), class = "factor"), Time1 = c(0L, 1L,
>     1L, 1L,
>      >         0L, 0L,
>      >          >      > 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L,
>     0L),
>      >         Time2 = c(1L,
>      >          >      > 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
>      >         0L, 1L, 0L,
>      >          >      > 1L, 1L)), .Names = c("Sample", "Time1",
>     "Time2"), class =
>      >          >     "data.frame",
>      >          >      > row.names = c(NA,
>      >          >      > -19L))
>      >          >      > daT<-data.frame(dat %>%
>      >          >      >    mutate(Time1.but.not.in.Time2 = case_when(
>      >          >      >              Time1 %in% "1" & Time2 %in% "0"  ~
>     "1"),
>      >          >      > Time2.but.not.in.Time1 = case_when(
>      >          >      >              Time1 %in% "0" & Time2 %in% "1"  ~
>     "1"),
>      >          >      >   BothTimes = case_when(
>      >          >      >              Time1 %in% "1" & Time2 %in% "1"  ~
>     "1")))
>      >          >      >   daT
>      >          >      >   summary(daT)
>      >          >      >
>      >          >      > cols.num <-
>      >         c("Time1.but.not.in.Time2","Time2.but.not.in.Time1",
>      >          >      > "BothTimes")
>      >          >      > daT[cols.num] <- sapply(daT[cols.num],as.numeric)
>      >          >      > summary(daT)
>      >          >      > ProportionValue<-sum(daT$BothTimes,
>      >         na.rm=T)/sum(daT$Time1, na.rm=T)
>      >          >      > ProportionValue
>      >          >      > standard error??
>      >          >      >
>      >          >      >       [[alternative HTML version deleted]]
>      >          >      >
>      >          >      > ______________________________________________
>      >          >      > R-help using r-project.org
>     <mailto:R-help using r-project.org> <mailto:R-help using r-project.org
>     <mailto:R-help using r-project.org>>
>      >         <mailto:R-help using r-project.org
>     <mailto:R-help using r-project.org> <mailto:R-help using r-project.org
>     <mailto:R-help using r-project.org>>>
>      >         mailing list
>      >          >     -- To UNSUBSCRIBE and more, see
>      >          >      > https://stat.ethz.ch/mailman/listinfo/r-help
>      >          >      > PLEASE do read the posting guide
>      >          > http://www.R-project.org/posting-guide.html
>      >          >      > and provide commented, minimal, self-contained,
>      >         reproducible code.
>      >          >      >
>      >          >
>      >
>



More information about the R-help mailing list