[R] How to generate SE for the proportion value using a randomization process in R?

Marna Wagley m@rn@@w@g|ey @end|ng |rom gm@||@com
Thu Jan 28 21:29:27 CET 2021


Thank you Rui,
This is great. How about the following?

SimilatedData<-boot.array(b, indices=T)

seems it is giving the rows ID which are used in the calculation, isn't it?




On Thu, Jan 28, 2021 at 12:21 PM Rui Barradas <ruipbarradas using sapo.pt> wrote:

> Hello,
>
> I don't know why you would need to see the indices but rewrite the
> function bootprop as
>
> bootprop_ind <- function(data, index){
>    d <- data[index, ]
>    #sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]], na.rm = TRUE)
>    index
> }
>
>
> and call in the same way. It will now return a matrix of indices with R
> = 1000 rows and 19 columns.
>
> Hope this helps,
>
> Rui Barradas
>
>
> Às 19:29 de 28/01/21, Marna Wagley escreveu:
> > Hi Rui,
> > I am sorry for asking you several questions.
> >
> > In the given example, randomizations (reshuffle) were done 1000 times,
> > and its 1000 proportion values (results) are stored and it can be seen
> > using b$t; but I was wondering how the table was randomized (which rows
> > have been missed/or repeated in each randomizing procedure?).
> >
> > Is there any way we can see the randomized table and its associated
> > results? Here in this example, I randomized (or bootstrapped) the table
> > into three times (R=3) so I would like to store these three tables and
> > look at them later to know which rows were repeated/missed. Is there any
> > possibility?
> > The example data and the code is given below.
> >
> > Thank you for your help.
> >
> > ####
> > library(boot)
> > dat<-structure(list(Sample = structure(c(1L, 12L, 13L, 14L, 15L, 16L,
> > 17L, 18L, 19L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L), .Label =
> c("id1",
> > "id10", "id11", "id12", "id13", "id14", "id15", "id16", "id17",
> > "id18", "id19", "Id2", "id3", "id4", "id5", "id6", "id7", "id8",
> > "id9"), class = "factor"), Time1 = c(0L, 1L, 1L, 1L, 0L, 0L,
> > 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L), Time2 = c(1L,
> > 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L,
> > 1L, 1L)), .Names = c("Sample", "Time1", "Time2"), class = "data.frame",
> > row.names = c(NA,
> > -19L))
> > daT<-data.frame(dat %>%
> >    mutate(Time1.but.not.in.Time2 = case_when(
> >              Time1 %in% "1" & Time2 %in% "0"  ~ "1"),
> > Time2.but.not.in.Time1 = case_when(
> >              Time1 %in% "0" & Time2 %in% "1"  ~ "1"),
> >   BothTimes = case_when(
> >              Time1 %in% "1" & Time2 %in% "1"  ~ "1")))
> > cols.num <- c("Time1.but.not.in.Time2","Time2.but.not.in.Time1",
> > "BothTimes")
> > daT[cols.num] <- sapply(daT[cols.num],as.numeric)
> > summary(daT)
> >
> > bootprop <- function(data, index){
> >     d <- data[index, ]
> >     sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]], na.rm = TRUE)
> > }
> >
> > R <- 3
> > set.seed(2020)
> > b <- boot(daT, bootprop, R)
> > b
> > b$t0     # original
> > b$t
> > sd(b$t)  # bootstrapped estimate of the SE of the sample prop.
> > hist(b$t, freq = FALSE)
> >
> > str(b)
> > b$data
> > b$seed
> > b$sim
> > b$strata
> > ################
> >
> >
> > On Sat, Jan 23, 2021 at 12:36 AM Marna Wagley <marna.wagley using gmail.com
> > <mailto:marna.wagley using gmail.com>> wrote:
> >
> >     Yes Rui, I can see we don't need to divide by square root of sample
> >     size. The example is great to understand it.
> >     Thank you.
> >     Marna
> >
> >
> >     On Sat, Jan 23, 2021 at 12:28 AM Rui Barradas <ruipbarradas using sapo.pt
> >     <mailto:ruipbarradas using sapo.pt>> wrote:
> >
> >         Hello,
> >
> >         Inline.
> >
> >         Às 07:47 de 23/01/21, Marna Wagley escreveu:
> >          > Dear Rui,
> >          > I was wondering whether we have to square root of SD to find
> >         SE, right?
> >
> >         No, we don't. var already divides by n, don't divide again.
> >         This is the code, that can be seen by running the function name
> >         at a
> >         command line.
> >
> >
> >         sd
> >         #function (x, na.rm = FALSE)
> >         #sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
> >         #    na.rm = na.rm))
> >         #<bytecode: 0x55f3ce900848>
> >         #<environment: namespace:stats>
> >
> >
> >
> >          >
> >          > bootprop <- function(data, index){
> >          >     d <- data[index, ]
> >          >     sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]],
> >         na.rm = TRUE)
> >          > }
> >          >
> >          > R <- 1e3
> >          > set.seed(2020)
> >          > b <- boot(daT, bootprop, R)
> >          > b
> >          > b$t0     # original
> >          > sd(b$t)  # bootstrapped estimate of the SE of the sample prop.
> >          > sd(b$t)/sqrt(1000)
> >          > pandit*(1-pandit)
> >          >
> >          > hist(b$t, freq = FALSE)
> >
> >
> >         Try plotting the normal densities for both cases, the red line is
> >         clearly wrong.
> >
> >
> >         f <- function(x, xbar, s){
> >             dnorm(x, mean = xbar, sd = s)
> >         }
> >
> >         hist(b$t, freq = FALSE)
> >         curve(f(x, xbar = b$t0, s = sd(b$t)), from = 0, to = 1, col =
> >         "blue",
> >         add = TRUE)
> >         curve(f(x, xbar = b$t0, s = sd(b$t)/sqrt(R)), from = 0, to = 1,
> >         col =
> >         "red", add = TRUE)
> >
> >
> >         Hope this helps,
> >
> >         Rui Barradas
> >
> >          >
> >          >
> >          >
> >          >
> >          > On Fri, Jan 22, 2021 at 3:07 PM Rui Barradas
> >         <ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>
> >          > <mailto:ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>>>
> >         wrote:
> >          >
> >          >     Hello,
> >          >
> >          >     Something like this, using base package boot?
> >          >
> >          >
> >          >     library(boot)
> >          >
> >          >     bootprop <- function(data, index){
> >          >         d <- data[index, ]
> >          >         sum(d[["BothTimes"]], na.rm = TRUE)/sum(d[["Time1"]],
> >         na.rm = TRUE)
> >          >     }
> >          >
> >          >     R <- 1e3
> >          >     set.seed(2020)
> >          >     b <- boot(daT, bootprop, R)
> >          >     b
> >          >     b$t0     # original
> >          >     sd(b$t)  # bootstrapped estimate of the SE of the sample
> >         prop.
> >          >     hist(b$t, freq = FALSE)
> >          >
> >          >
> >          >     Hope this helps,
> >          >
> >          >     Rui Barradas
> >          >
> >          >     Às 21:57 de 22/01/21, Marna Wagley escreveu:
> >          >      > Hi All,
> >          >      > I was trying to estimate standard error (SE) for the
> >         proportion
> >          >     value using
> >          >      > some kind of randomization process (bootstrapping or
> >         jackknifing)
> >          >     in R, but
> >          >      > I could not figure it out.
> >          >      >
> >          >      > Is there any way to generate SE for the proportion?
> >          >      >
> >          >      > The example of the data and the code I am using is
> >         attached for your
> >          >      > reference. I would like to generate the value of
> >         proportion with
> >          >     a SE using
> >          >      > a 1000 times randomization.
> >          >      >
> >          >      > dat<-structure(list(Sample = structure(c(1L, 12L, 13L,
> >         14L, 15L, 16L,
> >          >      > 17L, 18L, 19L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
> >         11L), .Label
> >          >     = c("id1",
> >          >      > "id10", "id11", "id12", "id13", "id14", "id15",
> >         "id16", "id17",
> >          >      > "id18", "id19", "Id2", "id3", "id4", "id5", "id6",
> >         "id7", "id8",
> >          >      > "id9"), class = "factor"), Time1 = c(0L, 1L, 1L, 1L,
> >         0L, 0L,
> >          >      > 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L),
> >         Time2 = c(1L,
> >          >      > 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
> >         0L, 1L, 0L,
> >          >      > 1L, 1L)), .Names = c("Sample", "Time1", "Time2"),
> class =
> >          >     "data.frame",
> >          >      > row.names = c(NA,
> >          >      > -19L))
> >          >      > daT<-data.frame(dat %>%
> >          >      >    mutate(Time1.but.not.in.Time2 = case_when(
> >          >      >              Time1 %in% "1" & Time2 %in% "0"  ~ "1"),
> >          >      > Time2.but.not.in.Time1 = case_when(
> >          >      >              Time1 %in% "0" & Time2 %in% "1"  ~ "1"),
> >          >      >   BothTimes = case_when(
> >          >      >              Time1 %in% "1" & Time2 %in% "1"  ~ "1")))
> >          >      >   daT
> >          >      >   summary(daT)
> >          >      >
> >          >      > cols.num <-
> >         c("Time1.but.not.in.Time2","Time2.but.not.in.Time1",
> >          >      > "BothTimes")
> >          >      > daT[cols.num] <- sapply(daT[cols.num],as.numeric)
> >          >      > summary(daT)
> >          >      > ProportionValue<-sum(daT$BothTimes,
> >         na.rm=T)/sum(daT$Time1, na.rm=T)
> >          >      > ProportionValue
> >          >      > standard error??
> >          >      >
> >          >      >       [[alternative HTML version deleted]]
> >          >      >
> >          >      > ______________________________________________
> >          >      > R-help using r-project.org <mailto:R-help using r-project.org>
> >         <mailto:R-help using r-project.org <mailto:R-help using r-project.org>>
> >         mailing list
> >          >     -- To UNSUBSCRIBE and more, see
> >          >      > https://stat.ethz.ch/mailman/listinfo/r-help
> >          >      > PLEASE do read the posting guide
> >          > http://www.R-project.org/posting-guide.html
> >          >      > and provide commented, minimal, self-contained,
> >         reproducible code.
> >          >      >
> >          >
> >
>

	[[alternative HTML version deleted]]



More information about the R-help mailing list