[R] Predicition and CI for lognormal model

Chien-Pang Chin chienpang.c at gmail.com
Mon Oct 31 10:17:48 CET 2016

Hi, everyone


I have a model like.



glmmodel=glm(log(cpue)~yy+qq+cc+pp, family=gaussian)


and I want to estimate yy, qq, cc, pp effect and CI


A senior scientist suggested to use



        model <- cbind(yhat=predict.glm(glmmodel, se.fit=T), DATA)

yy_effect = with(model, tapply(fit, yy, mean))

yy_effect.se = with(model, tapply(se.fit, yy, mean))

STD_CPUE_yy = exp(yy_effect+yy_effect.se/2);


It's confusing me, because I don't understand 1). why calculate mean first
before exp, 2). why +se/2 and 3). How can I calculate CI for STD_CPUE_yy?


My previous code was.


        yhat = predict.glm(glmmodel, se.fit=T,interval = "predict")

pcpue =exp(yhat$fit)

   pcatch = pcpue*yftcpue$Hook/1000



 #calculate mean predication for each yy

yypcatch= with(model, tapply(pcatch, yy, sum))

   yyhook= with(model, tapply(Hook, yy, sum))



# calculate CI for each yy

        upp= model$fit+1.96*model$se.fit

        low= model$fit-1.96*model$se.fit


thanks for help



	[[alternative HTML version deleted]]

More information about the R-help mailing list