[BioC] edgeR: adjusting prior.n
Gordon K Smyth
smyth at wehi.EDU.AU
Sat Feb 8 08:22:41 CET 2014
Dear Jason,
The argument prior.n was removed from the estimateTagwiseDisp() function
quite a while ago. The current version of edgeR is 3.4.2:
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
When prior.n existed, it certainly did affect the tagwise dispersions,
logFC and p-values.
You have made a programming error by enclosing the argument
common.dispersion=FALSE in parentheses, which prevents correct argument
matching.
Best wishes
Gordon
> Date: Thu, 6 Feb 2014 19:07:19 -0800 (PST)
> From: "J [guest]" <guest at bioconductor.org>
> To: bioconductor at r-project.org, jem482 at psu.edu
> Subject: [BioC] edgeR: adjusting prior.n
>
>
> Hello Bioconductor mailing list,
> I'm using edgeR to analyze RNA-seq and RIP-seq data. I'm using the
> moderated gene-wise dispersion method where I choose a prior.n based
> upon the number of samples I have and how much shrinkage I desire to
> reduce variance in my data. I've followed the R user guide and a guide a
> professor made at my university to achieve gene-wise (tag-wise)
> dispersion as opposed to common dispersion. I can see that the tag-wise
> dispersion changes for each gene when I change the prior.n value (see
> below). However I notice that that p-values and logFC values don't
> change when I change the prior.n (see below).
>
> So I'm wondering if I'm doing something wrong or if the p-values and/or
> logFC are not supposed to change? Or is it just some data is not
> effected at all by prior.n?
>
> The following is an example of my command line code analyzing some
> RNA-seq data. I illustrated an example where I used a prior.n = 1 or 4
> to illustrate how I don't see a change in the final results. Is this
> correct?
> Thanks
> J
>
>
> normFact = calcNormFactors(TotalReads)
> treatments = substr(colnames(TotalReads), 1, 3)
> d = DGEList(counts = TotalReads, group = treatments, genes = rownames(TotalReads), lib.size = colSums(TotalReads) * normFact)
> d = estimateCommonDisp(d)
> d$common.dispersion
> [1] 0.1669584
>
> #comparing prior.n 1 v. 4
> d1 = estimateTagwiseDisp(d, prior.n = 1)
> d1
> $tagwise.dispersion
> [1] 0.1607020 0.3674590 0.1058665 0.1080470 0.1545314
> 20684 more elements ???
> d4 = estimateTagwiseDisp(d, prior.n = 4)
> d4
> $tagwise.dispersion
> [1] 0.1463446 0.4059551 0.1278219 0.1213169 0.2150826
> 20684 more elements ...
>
>
>
> #prior.n = 1
> edgeHSMvHSFd1 = exactTest(d1, pair = c("HSM", "HSF"), (common.disp = FALSE ))
>
> head(edgeHSMvHSFd1)
> An object of class "DGEExact"
> $table
> logFC logCPM PValue
> ENSG00000000003 -0.07130289 6.290327 6.073496e-01
> ENSG00000000005 -2.28060195 -4.439294 1.000000e+00
> ENSG00000000419 0.25083103 4.119127 8.780027e-02
> ENSG00000000457 -0.19453270 4.557886 8.468506e-02
> ENSG00000000460 -0.05015655 1.770160 9.075606e-01
> ENSG00000000938 0.92221495 4.526491 1.227442e-11
>
> #prior.n = 4
> edgeHSMvHSFd4 = exactTest(d4, pair = c("HSM", "HSF"), (common.disp = FALSE ))
>
> head(edgeHSMvHSFd4)
> An object of class "DGEExact"
> $table
> logFC logCPM PValue
> ENSG00000000003 -0.07130289 6.290327 6.073496e-01
> ENSG00000000005 -2.28060195 -4.439294 1.000000e+00
> ENSG00000000419 0.25083103 4.119127 8.780027e-02
> ENSG00000000457 -0.19453270 4.557886 8.468506e-02
> ENSG00000000460 -0.05015655 1.770160 9.075606e-01
> ENSG00000000938 0.92221495 4.526491 1.227442e-11
>
> sum(edgeHSMvHSFd1$table[,1]>0)
> [1] 12770
> sum(edgeHSMvHSFd4$table[,1]>0)
> [1] 12770
>
> #same results for DE genes for both
> sum(edgeHSMvHSFd1$table[,1]>0 & edgeHSMvHSFd1$table[,3]<0.01)
> [1] 1763
> sum(edgeHSMvHSFd4$table[,1]>0 & edgeHSMvHSFd4$table[,3]<0.01)
> [1] 1763
>
> -- output of sessionInfo():
>
>> sessionInfo()
> R version 2.15.0 (2012-03-30)
> Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
>
> locale:
> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>
> attached base packages:
> [1] stats graphics grDevices utils datasets methods
> [7] base
>
> other attached packages:
> [1] edgeR_2.6.2 limma_3.12.0
>
> loaded via a namespace (and not attached):
> [1] tools_2.15.0
______________________________________________________________________
The information in this email is confidential and intend...{{dropped:4}}
More information about the Bioconductor
mailing list