[BioC] hyperGTest, different Results using different annotation packages
Marc Carlson
mcarlson at fhcrc.org
Fri Apr 3 19:34:14 CEST 2009
Hi Wiebke,
When did you make your custom annotation package? And when you made it,
was if made from the same human.db0 package (IOW the same release) as
the org.Hs.eg.db package that you compared it to? Based on the
sessionInfo() below, you should have the human.db0 2.2.5 installed in
order for these packages to be comparable.
Marc
Wiebke Iffert wrote:
> Dear All,
>
> I want to do an analysis using the function hyperGTest from pakage GOstats.
> When I use the geneIDs of my own annotation package a get other result from the analysis than when using the annotation package org.Hs.eg.db.
>
> I have built my own annotation package using AnnotationDbi following the instructions in the vignette (I'm using data from a self spotted microarray with oligonucleotides which I mapped to Entrez geneIDs):
>
>
>> library(AnnotationDbi)
>> makeHUMANCHIP_DB(affy=FALSE, prefix="HighDensityArray", fileName="high_density_array_oid2eg.txt", >baseMapType="eg", outputDir = getwd(), version="1.0.2", manufacturer = "selfspotted",
>> chipName = "High Density Array", manufacturerUrl = "NA")
>>
>
> To build an object of class GOHyperGParams, I used the geneIDs corresponding to the oligonucleotides of interest.
>
>
>> paramsBPover<-new("GOHyperGParams",geneIds= genesOfInterest,universeGeneIds= allgenes, >annotation="HighDensityArray.db", ontology="BP", pvalueCutoff=0.05, conditional=FALSE, >testDirection="over", categoryName="GO")
>> hgOver.BP<-hyperGTest(paramsBPover)
>>
>
> and I got the result:
>
>> hgOver.BP
>>
> Gene to GO BP test for over-representation
> 1449 GO BP ids tested (180 have p < 0.05)
> Selected gene set size: 203
> Gene universe size: 1768
> Annotation package: HighDensityArray.db
>
>
> By coincidence I started the same methods using the annotation package org.Hs.eg.db with the same geneIDs:
>
>
>> paramsBPover2<-new("GOHyperGParams",geneIds= genesOfInterest,universeGeneIds= allgenes, >annotation="org.Hs.eg.db", ontology="BP", pvalueCutoff=0.05, conditional=FALSE, testDirection="over", >categoryName="GO")
>> hgOver.BP2<-hyperGTest(paramsBPover2)
>>
>
> and I got the result:
>
>> hgOver.BP2
>>
> Gene to GO BP test for over-representation
> 967 GO BP ids tested (118 have p < 0.05)
> Selected gene set size: 203
> Gene universe size: 1768
> Annotation package: org.Hs.eg.db
>
> Shouldn't I get the same results independent from these 2 annotation packages? (I thougth that my package HighDensityArray is something like an subset of the org.Hs.eg.db package, but using my oligonucleotide IDs as Identifier instead of geneIDs - or did I get that wrong?).
> Which analysis is the one to rely on?
>
>
> Thanks in advance for any help.
> wiebke
>
>
> P.S.
> sessionInfo()
> R version 2.8.0 (2008-10-20)
> i386-apple-darwin8.11.1
>
> locale:
> de_DE.UTF-8/de_DE.UTF-8/C/C/de_DE.UTF-8/de_DE.UTF-8
>
> attached base packages:
> [1] splines tools stats graphics grDevices utils
> [7] datasets methods base
>
> other attached packages:
> [1] org.Hs.eg.db_2.2.6 GOstats_2.8.0
> [3] RBGL_1.18.0 GO.db_2.2.5
> [5] HighDensityArray.db_1.0.2 RSQLite_0.7-1
> [7] DBI_0.2-4 Category_2.8.1
> [9] genefilter_1.22.0 survival_2.34-1
> [11] annotate_1.20.1 xtable_1.5-4
> [13] AnnotationDbi_1.4.3 graph_1.20.0
> [15] Biobase_2.2.1
>
> loaded via a namespace (and not attached):
> [1] GSEABase_1.4.0 XML_1.98-1 cluster_1.11.11
>
>
> --
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
>
>
More information about the Bioconductor
mailing list