[BioC] CGHcall error

Henrik Bengtsson hb at stat.berkeley.edu
Tue Feb 5 16:52:05 CET 2008


On Feb 5, 2008 3:44 AM, Daniel Rico <drico at cnio.es> wrote:
> hits=-2.6 tests=BAYES_00
> X-USF-Spam-Flag: NO
>
> Dear List,
>
> I am trying to use CGHcall function from CGHcall package, trying to use
> my own normalized and segmented dataframes (Agilent oligo Human 44A,
> data normalized with MANOR and segmented with GLAD), buy I get this error:
>
> EM algorithm started ...
> Error en regionsdat[k, 1]:regionsdat[k, 2] : Argumento NA/NaN
>
> Which I don't get when I use Wilting data from the vignette example, so
> it could be a problem with the format of my data (although I can't find
> any...). I wondered if maybe the dataframes were too large, but I also
> get (another) error if I only run CGHcall with 1 chromosome:
>
> EM algorithm done ...
> Error en (posteriorfin2[profile == k, ])[, -1] :
>   número incorreto de dimensiones # Incorrect dimension number

Without looking at the code itself, that looks like a classical
mistake.  When writing

  posteriorfin2[profile == k, ]

without an explicit 'drop=FALSE', the developer assumes that 'profile
== k' will match
two or more rows in the 'posteriorfin2' matrix/data.frame.  I suspect
that in your case
'profile == k' is only TRUE in one case, which makes
'posteriorfin2[profile == k, ]'
return a vector and not a matrix/data.frame.  This will cause the next
subsetting '[,-1]'
to fail, because there are no columns in a plain vector ("Incorrect
dimension number").
If the code would have said

 posteriorfin2[profile == k,,drop=FALSE]

the particular error would not show up.

However, in the end of the day, the real question might be why you end
up with only
a single case for which 'profile == k' is TRUE.

That's my $0.02

Henrik



>
> I would appreciate any suggestion.
> Best,
> Daniel
>
> Details:
>
>  > load("norm3.RData")
>  > load("seg3.RData")
>  > library(CGHcall)
> Loading required package: impute
> Loading required package: DNAcopy
>  > ls()
> [1] "norm3" "seg3"
>  > head(norm3)
>   BAC.clone Chromosome bp.position X13713 X13819 X13820 X13821 X13822 X13859
> 1  1:604268          1      604268   0.05   0.10   0.40  -0.05   0.24   0.27
> 2  1:801796          1      801796   0.17  -0.15   0.03  -0.12  -0.05   0.05
> 3  1:827354          1      827354   0.13   0.15   0.11   0.17   0.01  -0.17
> 4 1:1059676          1     1059676   0.03  -0.18   0.00  -0.11  -0.10  -0.29
> 5 1:1089934          1     1089934  -0.23  -0.02   0.47   0.07   0.14   0.13
> 6 1:1139597          1     1139597   0.11  -0.05   0.03   0.03   0.08   0.06
>   X13860 X13862 X15740 X16421 X16422 X16578 X16579 X17264 X17274 X17278
> X17279
> 1  -0.07   0.64   0.31   0.39   0.10   0.39   0.47  -0.08  -0.08
> 0.07   0.10
> 2   0.19  -0.23   0.12   0.09  -0.17   0.01  -0.09  -0.07  -0.07
> 0.07   0.24
> 3  -0.05  -0.17   0.32   0.03  -0.16   0.02   0.02   0.00   0.00
> 0.25   0.04
> 4   0.01  -0.33  -0.19  -0.10  -0.02  -0.17  -0.13  -0.30  -0.30  -0.03
> -0.13
> 5  -0.02   0.18  -0.08  -0.92  -0.94  -0.02   0.12   0.16   0.16
> -0.02   0.09
> 6   0.07   0.19   0.09   0.18   0.11  -0.03   0.04   0.16   0.16
> 0.01   0.01
>   X17385 X17386 X17388 X17446 X17447 X17448
> 1   0.52  -0.63  -0.50   0.24   0.05   0.60
> 2  -0.19  -0.26   0.08  -0.01   0.17   0.05
> 3  -0.12  -0.01   0.20  -0.15  -0.04   0.00
> 4  -0.08  -0.12  -0.05  -0.01  -0.01   0.07
> 5  -0.09   0.17   0.17   0.25   0.33   0.42
> 6   0.17   0.48   0.19   0.24   0.39   0.36
>  > head(seg3)
>   BAC.clone Chromosome bp.position X13713 X13819 X13820 X13821 X13822 X13859
> 1  1:604268          1      604268   0.02      0   0.01   0.01   0.01  -0.01
> 2  1:801796          1      801796   0.02      0   0.01   0.01   0.01  -0.01
> 3  1:827354          1      827354   0.02      0   0.01   0.01   0.01  -0.01
> 4 1:1059676          1     1059676   0.02      0   0.01   0.01   0.01  -0.01
> 5 1:1089934          1     1089934   0.02      0   0.01   0.01   0.01  -0.01
> 6 1:1139597          1     1139597   0.02      0   0.01   0.01   0.01  -0.01
>   X13860 X13862 X15740 X16421 X16422 X16578 X16579 X17264 X17274 X17278
> X17279
> 1      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
> 2      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
> 3      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
> 4      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
> 5      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
> 6      0   0.01  -0.01      0  -0.01   0.01   0.02   0.03   0.03   0.03
> -0.01
>   X17385 X17386 X17388 X17446 X17447 X17448
> 1  -0.08  -0.43   0.02   0.01   0.01  -0.01
> 2  -0.08  -0.43   0.02   0.01   0.01  -0.01
> 3  -0.08   0.02   0.02   0.01   0.01  -0.01
> 4  -0.08   0.02   0.02   0.01   0.01  -0.01
> 5  -0.08   0.02   0.02   0.01   0.01  -0.01
> 6  -0.08   0.02   0.02   0.01   0.01  -0.01
>  > dim(norm3)
> [1] 37203    26
>  > dim(seg3)
> [1] 37203    26
>  > args(CGHcall)
> function (inputNormalized, inputSegmented, typeNormalized = "dataframe",
>     typeSegmented = "dataframe", prior = "auto", nclass = 3,
>     organism = "human")
> NULL
>  > Result <- CGHcall(norm3, seg3, organism="human")
> Dividing chromosomes into arms:
>
> New chromosome:          1              Arm:     1
> Centromere found:        122356957      Arm:     2
> New chromosome:          2              Arm:     3
> Centromere found:        93189898       Arm:     4
> New chromosome:          3              Arm:     5
> Centromere found:        92037544       Arm:     6
> New chromosome:          4              Arm:     7
> Centromere found:        50854874       Arm:     8
> New chromosome:          5              Arm:     9
> Centromere found:        47941398       Arm:     10
> New chromosome:          6              Arm:     11
> Centromere found:        60438125       Arm:     12
> New chromosome:          7              Arm:     13
> Centromere found:        59558273       Arm:     14
> New chromosome:          8              Arm:     15
> Centromere found:        45458052       Arm:     16
> New chromosome:          9              Arm:     17
> Centromere found:        48607499       Arm:     18
> New chromosome:          10             Arm:     19
> Centromere found:        40434941       Arm:     20
> New chromosome:          11             Arm:     21
> Centromere found:        52950781       Arm:     22
> New chromosome:          12             Arm:     23
> Centromere found:        35445461       Arm:     24
> New chromosome:          13             Arm:     25
> Centromere found:        16934000       Arm:     26
> New chromosome:          14             Arm:     27
> Centromere found:        16570000       Arm:     28
> New chromosome:          15             Arm:     29
> Centromere found:        16760000       Arm:     30
> New chromosome:          16             Arm:     31
> Centromere found:        36043302       Arm:     32
> New chromosome:          17             Arm:     33
> Centromere found:        22237133       Arm:     34
> New chromosome:          18             Arm:     35
> Centromere found:        16082897       Arm:     36
> New chromosome:          19             Arm:     37
> Centromere found:        28423622       Arm:     38
> New chromosome:          20             Arm:     39
> Centromere found:        27150400       Arm:     40
> New chromosome:          21             Arm:     41
> Centromere found:        11760000       Arm:     42
> New chromosome:          22             Arm:     43
> Centromere found:        12830000       Arm:     44
> EM algorithm started ...
> Error en regionsdat[k, 1]:regionsdat[k, 2] : Argumento NA/NaN
>
> # I also tried with just one chromosome, but:
>
>  > Result <- CGHcall(norm3[norm3$Chromosome=="1",],
> seg3[norm3$Chromosome=="1",], organism="human")
> Dividing chromosomes into arms:
>
> New chromosome:          1              Arm:     1
> Centromere found:        122356957      Arm:     2
> EM algorithm started ...
> Calling iteration 1 :
>  [1]  2.300000e+01 -4.372806e+04 -1.367577e+00 -4.412366e-01 -2.586618e-03
>  [6]  4.344142e-01  1.170159e+00  3.031326e-01  1.226376e-01  3.581388e-02
> [11]  2.452344e-01 -2.338149e-03
> Calling iteration 2 :
>  [1]  2.300000e+01 -4.372728e+04 -1.433100e+00 -4.457681e-01 -2.129149e-03
>  [6]  4.289389e-01  1.159208e+00  2.682406e-01  1.340851e-01  3.530604e-02
> [11]  2.503167e-01 -5.316184e-04
> EM algorithm done ...
> Error en (posteriorfin2[profile == k, ])[, -1] :
>   número incorreto de dimensiones #Incorrect dimen
>
> When I used the Wilting data following the vignette:
>
>  > result <- CGHcall(norm.cghdata, seg.cghdata)
> EM algorithm started ...
> Calling iteration 1 :
>  [1]  2.000000e+00 -4.244272e+03 -5.832847e-01 -2.831586e-01  5.078766e-03
>  [6]  3.289769e-01  1.157954e+00 -4.264512e-04  1.257185e-01  6.996470e-02
> [11]  4.429449e-02  1.000000e-04
> Calling iteration 2 :
>  [1]  2.000000e+00 -4.243597e+03 -5.762129e-01 -2.760868e-01  7.852040e-03
>  [6]  3.283777e-01  1.156755e+00 -2.940006e-04  1.215480e-01  6.854895e-02
> [11]  3.598413e-02  1.000000e-04
> EM algorithm done ...
> FINISHED!
> Total time: 1 minutes
>  > head(norm.cghdata)
>     BAC.clone Chromosome bp.position     AdCA10     SCC27
> 1 RP11-465B22          1     1082138 -0.1804618 0.5999086
> 3  RP4-785P20          1     3318085 -0.1137811 0.7727828
> 4   RP1-37J18          1     4552927  0.4363701 0.6400294
> 6  RP4-706A17          1     6371642  0.5338766 0.1358740
> 7   RP3-438L4          1     7134999  0.4395028 0.6378606
> 8 RP11-338N10          1     7754212  0.2839457 0.5351469
>  > head(seg.cghdata)
>     BAC.clone Chromosome bp.position AdCA10  SCC27
> 1 RP11-465B22          1     1082138 0.3214 0.5804
> 3  RP4-785P20          1     3318085 0.3214 0.5804
> 4   RP1-37J18          1     4552927 0.3214 0.5804
> 6  RP4-706A17          1     6371642 0.3214 0.5804
> 7   RP3-438L4          1     7134999 0.3214 0.5804
> 8 RP11-338N10          1     7754212 0.3214 0.5804
>
>
>  > sessionInfo()
> R version 2.6.0 (2007-10-03)
> x86_64-unknown-linux-gnu
>
> locale:
> LC_CTYPE=es_ES at euro;LC_NUMERIC=C;LC_TIME=es_ES at euro;LC_COLLATE=es_ES at euro;LC_MONETARY=es_ES at euro;LC_MESSAGES=es_ES at euro;LC_PAPER=es_ES at euro;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=es_ES at euro;LC_IDENTIFICATION=C
>
> attached base packages:
> [1] stats     graphics  grDevices utils     datasets  methods   base
>
> other attached packages:
> [1] CGHcall_1.0.0  DNAcopy_1.12.0 impute_1.10.0
>
> loaded via a namespace (and not attached):
> [1] rcompgen_0.1-15
>
>
>
> --
> ********************************************
>
> Daniel Rico Rodriguez, PhD.
> Structural Computational Biology Group
> Spanish National Cancer Research Center, CNIO
> Melchor Fernandez Almagro, 3.
> 28029 Madrid, Spain.
> Phone: +34 91 224 69 00 #2256
> drico at cnio.es
> http://www.cnio.es
>
> ********************************************
>
>
> **NOTA DE CONFIDENCIALIDAD** Este correo electrónico, y ...{{dropped:3}}
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
>



More information about the Bioconductor mailing list