[BioC] Measuring similarities beween GO terms graphs
prsmra01 at uniroma2.it
prsmra01 at uniroma2.it
Wed Aug 29 16:00:58 CEST 2007
Hi Raffaele,
have a look here:
http://rss.acs.unt.edu/Rdoc/library/GOstats/html/simLL.html
hope this can help,
Cheers,
Maria
--Maria Persico, PhD. student
http://cbm.bio.uniroma2.it/~maria/
MINT database group
Universita' di Tor Vergata, via della Ricerca scientifica 11
00133 Roma, Italy
Tel +39 0672594315 (Supervisor's room)
Fax +39 0672594766
Mobile phone: +393479715662
e-mail maria.persico at uniroma2.it
Quoting rcaloger <raffaele.calogero at unito.it>:
> Hi,
> I am investigating the GO terms enrichment in two independent
> experiments in the same cell line: ctrl versus drug1 and ctrl versus drug2.
> Using GOstats I can visualize the graphs related to the two groups of
> enriched GO terms linked by their parents
> I will be very happy if someone could give me some advice where to find
> R code to search for similarities between graphs.
> Furthermore, there is any computational way to find the presence
> subgraphs in common between drug1 and drug2 GO graphs?
> Many thanks for the help
> Cheers
> Raffaele
>
> ########################################
> This is the code I use to generate the graphical output for each of the
> two data sets:
> gNll #subset of differentially expressed Entrez Gene Ids
> gNuniverse #the subset of Entrez Gene Ids representing the universe
> under evaluation
> my.go <- "BP"
> p.value <- 0.05
> params <- new("GOHyperGParams", geneIds = gNll, universeGeneIds =
> gNuniverse,
> annotation = lib, ontology = my.go, pvalueCutoff = p.value,
> conditional = FALSE, testDirection = "over")
> hgOver <- hyperGTest(params)
> hgOver.info <- paste(description(hgOver),
> paste(length(universeCounts(hgOver)),"GO BP ids
> tested","(",length(which(pvalues(hgOver) < p.value)),"have
> p<",p.value,")", sep=" "),
> paste("Selected gene set size:",length(geneIds(hgOver)),
> sep=" "),
> paste("Gene universe size:", universeMappedCount(hgOver),
> sep=" "),
> paste("Annotation package:", hgOver at annotation, sep=" "),
> sep="\n")
> conditional(params) <- TRUE
> ggMat <- summary(hgOver)
>
> if(my.go == "BP"){
> tfG <- GOGraph(ggMat[,1], GOBPPARENTS)
> } else if (my.go == "MF"){
> tfG <- GOGraph(ggMat[,1], GOMFPARENTS)
> } else if (my.go == "CC"){
> tfG <- GOGraph(ggMat[,1], GOCCPARENTS)
> }
> gCol <- rep("lightblue", length(nodes(tfG))
> gCol[which(nodes(tfG)%in%ggMat[,1])] <- "tomato"
>
> tGfnA <-
> makeNodeAttrs(tfG,label=nodes(tfG),shape="ellipse",fillcolor=gCol,fixedsize=FALSE)
> plot(tfG, nodeAttrs=tGfnA)
>
>
> --
>
> ----------------------------------------
> Prof. Raffaele A. Calogero
> Bioinformatics and Genomics Unit
> Dipartimento di Scienze Cliniche e Biologiche
> c/o Az. Ospedaliera S. Luigi
> Regione Gonzole 10, Orbassano
> 10043 Torino
> tel. ++39 0116705417
> Lab. ++39 0116705408
> Fax ++39 0119038639
> Mobile ++39 3333827080
> email: raffaele.calogero at unito.it
> raffaele[dot]calogero[at]gmail[dot]com
> www: www.bioinformatica.unito.it
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives:
> http://news.gmane.org/gmane.science.biology.informatics.conductor
>
More information about the Bioconductor
mailing list