[R-sig-ME] blme optimizer warnings
Sijia Huang
hu@ng@jcc @end|ng |rom gm@||@com
Thu May 14 02:53:58 CEST 2020
Hi everyone,
I am fitting a cross-classified model with blme, but getting 1 optimizer
warning. The code and output are shown below. Any suggestions regarding
fixing the estimation issue? Thanks!
> meta.example <- blmer(g~0+(1|Study)+(1|Subscale)+
1|Outcome:Study:Subscale),
+ data=meta, weights = Variance,
+ resid.prior = point(1),
+ control = lmerControl(optimizer="bobyqa"))
> meta.example
Cov prior : Outcome:Study:Subscale ~ wishart(df = 3.5, scale = Inf,
posterior.scale = cov, common.scale = TRUE)
: Study ~ wishart(df = 3.5, scale = Inf, posterior.scale = cov,
common.scale = TRUE)
: Subscale ~ wishart(df = 3.5, scale = Inf, posterior.scale =
cov, common.scale = TRUE)
Resid prior: point(value = 1)
Prior dev : NaN
Linear mixed model fit by maximum likelihood ['blmerMod']
Formula: g ~ 0 + (1 | Study) + (1 | Subscale) + (1 | Outcome:Study:Subscale)
Data: meta
Weights: Variance
AIC BIC logLik deviance df.resid
Inf Inf -Inf Inf 64
Random effects:
Groups Name Std.Dev.
Outcome:Study:Subscale (Intercept) 1
Study (Intercept) 1
Subscale (Intercept) 1
Residual 1
Number of obs: 68, groups: Outcome:Study:Subscale, 68; Study, 57;
Subscale, 7
No fixed effect coefficients
convergence code 0; 1 optimizer warnings; 0 lme4 warnings
Best,
Sijia
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list