[R-sig-ME] Testing for collinearity / variance inflation # glmmTMB
Hein van Lieverloo
he|n@v@n@||ever|oo @end|ng |rom v|@etern@@n|
Fri Mar 15 20:59:15 CET 2019
Dear Members,
I'm trying new variables in my glmmTMB genpois model (details below).
Adding one possibly collinear variable led to a much lower AIC (from 8031.7
to 7899.3) although the coefficient is not different from 0 (p(H1) = 0.66).
I'd like to test for variance inflation / collinearity between variables in
glmmTMB models.
For lm and lmer models, I can use VIF (I tested the same model in lmer (with
log(counts, -1 <- 0) and found no correlation, this model is given below in
the details).
Could someone help me with this (should I test for collinearity and how to
do that in glmmTMB models?)
I read about spatial and temporal autocorrelation in the GLMM FAQ on GitHub:
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html but if I understand
that correctly, that is about independency of sampling locations and
repeated measures, which I can test using the DHARMa package Mollie Brooks
pointed me to (great). I can't find any collinearity test there either.
Background
The model and the results are below, the new variable is logbR2A25 (log of
'plate count' bacteria on R2A medium 25 C, 10 days in water flushed from
hydrants).
The Asellidae (b4Wapit, counts filtered (100 um mesh) from 4 m3 water
flushed from hydrants) are significantly related with the concentration
dissolved organic carbon in water from treatment plants.
The bacteria (R2A plate count as index) may be an intermediary / collinear
variable though DOC -> bacteria -> Asellidae or DOC -> bacteria and
DOC -> x -> Asellidae (x are other or more trophic levels).
Thanks in advance
Kind regards,
Hein van Lieverloo
Details of the models
Family: genpois ( log )
Formula: b4Wapit ~ pTDOC + tCa + logtFe + lnOType + logbS500 +
bTemp +
logbR2A25 + blWavlo + blRoeiNaup + blMoskr + (1 | vNr/lNr)
Data: AllData
AIC BIC logLik deviance df.resid
7899.6 7976.9 -3934.8 7869.6 1264
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
lNr:vNr (Intercept) 1.727 1.314
vNr (Intercept) 2.130 1.459
Number of obs: 1279, groups: lNr:vNr, 175; vNr, 34
Overdispersion parameter for genpois family (): 593
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.712907 1.192110 -0.598 0.549826
pTDOC 0.596179 0.162938 3.659 0.000253 ***
tCa 0.038302 0.010659 3.593 0.000326 ***
logtFe 1.084413 0.391032 2.773 0.005551 **
lnOTypeland 0.848745 0.341383 2.486 0.012912 *
lnOTypestad -0.557032 0.579695 -0.961 0.336600 This is one factor
level that was and is not significantly different from the reference
logbS500 0.413405 0.079401 5.207 1.92e-07 ***
bTemp 0.030599 0.009214 3.321 0.000897 ***
logbR2A25 0.033845 0.076619 0.442 0.658688 Coefficient mean not
significantly different from 0
blWavlo 0.044184 0.029413 1.502 0.133050 Now this one is
also not significant anymore
blRoeiNaup 0.115044 0.038998 2.950 0.003178 **
blMoskr -0.116707 0.073944 -1.578 0.114493 Now this one is
also not significant anymore
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear mixed model fit by REML ['lmerMod']
Formula: blWapit ~ pTDOC + tCa + logtFe + lnOType + logbS500 + bTemp +
logbR2A25 + blWavlo + blRoeiNaup + blMoskr + (1 | vNr/lNr)
Data: AllData
REML criterion at convergence: 2066.4
Scaled residuals:
Min 1Q Median 3Q Max
-4.8586 -0.4306 -0.0618 0.3586 6.2652
Random effects:
Groups Name Variance Std.Dev.
lNr:vNr (Intercept) 0.4806 0.6933
vNr (Intercept) 0.3921 0.6262
Residual 0.1810 0.4254
Number of obs: 1279, groups: lNr:vNr, 175; vNr, 34
Fixed effects:
Estimate Std. Error t value
(Intercept) -1.314870 0.511630 -2.570
pTDOC 0.272967 0.069991 3.900
tCa 0.013413 0.004527 2.963
logtFe 0.543973 0.175699 3.096
lnOTypeland 0.378729 0.152018 2.491
lnOTypestad 0.058470 0.228750 0.256
logbS500 0.132559 0.030340 4.369
bTemp 0.007874 0.003296 2.389
logbR2A25 0.073598 0.032762 2.246
blWavlo 0.031790 0.011911 2.669
blRoeiNaup 0.043181 0.015952 2.707
blMoskr -0.061650 0.030685 -2.009
Correlation of Fixed Effects:
(Intr) pTDOC tCa logtFe lnOTypl lnOTyps lgS500 bTemp lR2A25
blWavl
pTDOC -0.326
tCa -0.538 -0.132
logtFe 0.671 -0.047 -0.050
lnOTypeland -0.300 -0.035 0.074 -0.071
lnOTypestad -0.183 0.069 -0.096 -0.115 0.440
logbS500 0.020 0.019 -0.014 -0.001 0.036 0.001
bTemp -0.058 0.008 -0.010 0.002 0.004 -0.001 0.078
logbR2A25 -0.219 -0.024 0.002 -0.027 0.029 -0.004 -0.080 -0.013
blWavlo 0.012 -0.015 0.013 -0.011 -0.002 -0.003 0.008 -0.257 -0.082
blRoeiNaup -0.024 -0.012 -0.029 0.007 0.020 0.023 -0.013 0.015 -0.015
-0.185
blMoskr 0.061 0.007 -0.011 0.009 0.001 0.021 -0.046 0.026 -0.026
-0.066
blRoNp
pTDOC
tCa
logtFe
lnOTypeland
lnOTypestad
logbS500
bTemp
logbR2A25
blWavlo
blRoeiNaup
blMoskr -0.036
> vif(Mx)
GVIF Df GVIF^(1/(2*Df))
pTDOC 1.028332 1 1.014067
tCa 1.047301 1 1.023377
logtFe 1.021198 1 1.010544
lnOType 1.052972 2 1.012988
logbS500 1.018038 1 1.008979
bTemp 1.080318 1 1.039384
logbR2A25 1.019387 1 1.009647
blWavlo 1.125894 1 1.061081
blRoeiNaup 1.042468 1 1.021013
blMoskr 1.011175 1 1.005572
More information about the R-sig-mixed-models
mailing list