[R-sig-ME] GAMM versus glmmTMB

dani orchidn @ending from live@com
Wed May 23 08:28:20 CEST 2018


Hello everyone,


I am working with a GAMM model with two random groups and two splines. Please see below. The results indicate that var9 has a linear association with the DV, therefore I decided to run another model without splines: a glmmTMB model - so I could also run a zero inflated model (not shown here); I replaced variable v1 (age, which displayed a quadratic association with the DV) with a categorical variable based on 3 age groups I was interested in.


I was surprised to see that the results differed - for instance var8 is approaching significance in the glmmTMB model.


My question is: should I stick with the GAMM model and remove the spline for var9 and run the GAMM again and present those results or should I proceed with the glmmTMB model.  I would like to use the glmmTMB model to be able to compare the fit for the zero inflated and simple Poisson models.


Thank you very much!

Best,

Dani

br5f<- gamm(Num_admiss ~ s(var1)+var2 + var3 + var4 + var5+
             var6+ var7+var8+s(VAR9)+offset(lexpfn), random=list(GROUPA=~1, groupB=~1), niterPQL=100,family=quasipoisson, data=may21Omi)

summary(br5f)

plot(br5f$gam,pages=1)
summary(br5f$gam)

# Family: quasipoisson
# Link function: log
#
# Formula:
#   Num_admiss ~ s(var1) + var2 + var3 + VAR4 +
#   var5 + var6 + var7 + var8 + s(VAR9) + offset(lexpfn)
#
# Parametric coefficients:
#   Estimate Std. Error t value Pr(>|t|)
# (Intercept)   -7.82201    1.47685  -5.296 1.32e-07 ***
# var2M  0.06554    0.16972   0.386   0.6994
# var31         0.10356    0.18420   0.562   0.5741
# VAR41  -0.05777    0.20573  -0.281   0.7789
# var5           0.11638    0.04644   2.506   0.0123 *
# var6             0.02036    0.03520   0.578   0.5630
# var7       -0.09351    0.06160  -1.518   0.1292
# var8            -0.03119    0.04293  -0.726   0.4676
# ---
#   Signif. codes:  0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
#
# Approximate significance of smooth terms:
#               edf Ref.df     F p-value
# s(var1)     2.146  2.146 6.087 0.00312 **
# s(VAR9) 1.000  1.000 0.218 0.64083
# ---
#   Signif. codes:  0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
#
# R-sq.(adj) =  0.0317
# Scale est. = 4.0528    n = 1892

summary(br5f$lme)

# Linear mixed-effects model fit by maximum likelihood
# Data: data
# AIC      BIC    logLik
# 11065.24 11148.43 -5517.622
#
# Random effects:
#   Formula: ~Xr - 1 | g
# Structure: pdIdnot
# Xr1       Xr2       Xr3       Xr4       Xr5       Xr6       Xr7       Xr8
# StdDev: 0.8294889 0.8294889 0.8294889 0.8294889 0.8294889 0.8294889 0.8294889 0.8294889
#
# Formula: ~Xr.0 - 1 | g.0 %in% g
# Structure: pdIdnot
# Xr.01        Xr.02        Xr.03        Xr.04        Xr.05        Xr.06        Xr.07        Xr.08
# StdDev: 7.618265e-05 7.618265e-05 7.618265e-05 7.618265e-05 7.618265e-05 7.618265e-05 7.618265e-05 7.618265e-05
#
# Formula: ~1 | GROUPA %in% g.0 %in% g
# (Intercept)
# StdDev: 0.0002181793
#
# Formula: ~1 | groupB %in% GROUPA %in% g.0 %in% g
# (Intercept) Residual
# StdDev: 0.0001290529 2.013153
#
# Variance function:
#   Structure: fixed weights
# Formula: ~invwt
# Fixed effects: list(fixed)
# Value Std.Error   DF   t-value p-value
# X(Intercept)      -7.822006 1.4776376 1470 -5.293589  0.0000
# Xvar2M     0.065538 0.1698107 1470  0.385945  0.6996
# Xvar31            0.103558 0.1843021  239  0.561892  0.5747
# XVAR41     -0.057767 0.2058345  173 -0.280647  0.7793
# Xvar5              0.116383 0.0464641  173  2.504787  0.0132
# Xvar6                0.020364 0.0352209  173  0.578183  0.5639
# Xvar7          -0.093506 0.0616327  173 -1.517156  0.1311
# Xvar8               -0.031187 0.0429514  173 -0.726106  0.4688
# Xs(var1)Fx1     -0.384263 0.2817892  173 -1.363652  0.1744
# Xs(VAR9)Fx1 -0.041480 0.0889423  173 -0.466372  0.6415
# Correlation:
#   X(Int) Xgnd_M Xthn21 XNEW_S Xvar5  Xvar6    Xst_p1 Xvar8    Xs()F1
# Xvar2M    -0.062
# Xvar31           -0.022  0.020
# XVAR41     -0.038 -0.029  0.189
# Xvar5             -0.008  0.057 -0.061 -0.206
# Xvar6               -0.868 -0.027  0.052  0.023  0.006
# Xvar7          -0.654  0.003 -0.089  0.043 -0.368  0.254
# Xvar8                0.011 -0.060 -0.001  0.034 -0.189  0.218 -0.228
# Xs(var1)Fx1     -0.019  0.023  0.000 -0.062  0.014  0.034 -0.006  0.029
# Xs(VAR9)Fx1  0.051 -0.095 -0.074 -0.052 -0.008 -0.078  0.037 -0.020 -0.021
#
# Standardized Within-Group Residuals:
#   Min         Q1        Med         Q3        Max
# -0.8708042 -0.3019933 -0.2090718 -0.0899512 14.9421321
#
# Number of Observations: 1892
# Number of Groups:
#   g                               g.0 %in% g
# 1                                        1
# GROUPA %in% g.0 %in% g groupB %in% GROUPA %in% g.0 %in% g
# 1472                                     1652





fit <-glmmTMB(Num_admiss ~ newagecat+var2 + var3 + VAR4 +
                              var9+var5+var6+ var7+var8+offset(lexpfn)+(1| GROUPA)+(1|groupB), family=poisson,data=may21Omi)

# Family: poisson  ( log )
# Formula:          Num_admiss ~ newagecat + var2 + var3 + VAR4 +
#   var5 + var6 + var7+ var8 + var9 + offset(lexpfn) +      (1 | GROUPA) + (1 | groupB)
# Data: may21Omi
#
# AIC      BIC   logLik deviance df.resid
# 2407.5   2479.6  -1190.8   2381.5     1879
#
# Random effects:
#
#   Conditional model:
#   Groups      Name        Variance Std.Dev.
# groupB (Intercept) 1.173    1.083
# GROUPA    (Intercept) 4.125    2.031
# Number of obs: 1892, groups:  groupB, 1636; GROUPA, 1472
#
# Conditional model:
#                  Estimate Std. Error z value Pr(>|z|)
# (Intercept)   -9.5950170  1.6721112  -5.738 9.57e-09 ***
# newagecat2    -0.6298056  0.1970976  -3.195   0.0014 **
# newagecat3    -0.4693142  0.2934038  -1.600   0.1097
# var2M  0.1048778  0.1886372   0.556   0.5782
# var31        -0.0120491  0.2067959  -0.058   0.9535
# VAR41  -0.0189449  0.2255866  -0.084   0.9331
# var5          0.1032991  0.0498155   2.074   0.0381 *
# var6             0.0081499  0.0385051   0.212   0.8324
# var7       -0.0273567  0.0729078  -0.375   0.7075
# var8            -0.0617969  0.0455357  -1.357   0.1747
# var9    -0.0005731  0.0040367  -0.142   0.8871
---
#   Signif. codes:  0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
<http://aka.ms/weboutlook>

	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list