[R-sig-ME] What is the lmer/nlme equivalent of the REPEATED subcommand in SPSS's MIXED procedure?

Ben Pelzer b.pelzer at maw.ru.nl
Thu Mar 22 10:43:42 CET 2018


Hi Maarten,

Notice that with the syntax for lmer, 6 random-effect (co)variances must 
be estimated and 1 residual variance, so in total 7 
(co)variance-parameters. However, there are only 6 observed covariances, 
meaning that the model is over-specified. Many solutions are possible 
all having the same loglikelihood. Ignoring the nobs.vs.nRE rule leads 
to just one of the many solutions. I would not be surprised if you would 
find another solution after manipulating the starting values for the 
covariances or other criteria for convergence. Best regards,

Ben.


On 22/03/2018 10:05, Maarten Jung wrote:
> I think the problem is that there is only one observation per 
> subject-occasion-combination in this example.
> In this case the random slopes are confounded with the residual 
> variation (see [1]).
>
> One *can* fit this model using lmer(test ~ 1 + occ2 + occ3 + (1 + occ2 
> + occ3|person), data = mydata,  control = 
> lmerControl(check.nobs.vs.nRE = "ignore")) or
> lme(test ~ 1 + occ2 + occ3, mydata, random = ~ occ2 + occ3|person).
>
> However, I don't know if the gls() fit ist more trustworthy than the 
> lmer/lme fit here.
> I would be grateful if somebody more experienced in mixed models could 
> comment on this.
>
> Best regards,
> Maarten
>
> [1] 
> https://stackoverflow.com/questions/26465215/random-slope-for-time-in-subject-not-working-in-lme4?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
>
> On Wed, Mar 21, 2018 at 9:27 PM, Ben Pelzer <b.pelzer at maw.ru.nl 
> <mailto:b.pelzer at maw.ru.nl>> wrote:
>
>     Hi Maarten,
>
>     Here is an example which shows the unstructured model with gls and the
>     not converging model with lmer. In this example, we have three
>     occasions
>     on which the dependent variable "test" was observed, for each of 20
>     persons. In total then we have 60 observations, with the "occasion"
>     variable taking values 1, 2, 3. The data also contain the person id
>     variable "person" and dummy variables "occ1", "occ2", "occ3" as (0
>     or 1)
>     indicators of the occasion.  In the syntax below, a factor variable
>     "factor1" is created also, to be in line with your question.
>
>     I used two different specifications for the unstructured model
>     with gls,
>     depending on whether dummies or factor1 was used. For lmer, I used
>     these
>     three different specifications, none of which converges.
>
>     The lmer syntax was added only to show the problem which lmer has with
>     estimating an unstructured correlation pattern.
>
>
>     #------------------------------------------------------------------------------------------------------------------------------------------------------------
>     mydata <-
>     read.table(url("https://surfdrive.surf.nl/files/index.php/s/XfE3mtbFCTUejIz/download
>     <https://surfdrive.surf.nl/files/index.php/s/XfE3mtbFCTUejIz/download>"),
>     header=TRUE)
>
>
>     #-------------------  unstructured correlation matrix
>     -----------------------
>
>
>     # Before applying a model, let's first examine the variances and
>     correlations
>     # for the three occasions. We have a strong violation of the
>     assumptions
>     # of homoscedasticity and compound symmetry.
>     test1 <- mydata[mydata$occasion==1,"test"]
>     test2 <- mydata[mydata$occasion==2,"test"]
>     test3 <- mydata[mydata$occasion==3,"test"]
>     cor(cbind(test1, test2, test3))
>     var(cbind(test1, test2, test3))
>
>     # Unstructured model using gls from package nlme and dummies for
>     occasion.
>     # This model exactly reproduces the observed correlations between
>     occasions.
>     unstruc.gls1 <- gls(test ~ 1+ occ2 + occ3,
>                                 method="REML", data=mydata,
>                                 correlation=corSymm(form = ~ 1 |person),
>                                 weights = varIdent(form = ~1|occasion))
>     summary(unstruc.gls1)
>
>
>     # Unstructured model using factor1 for occasion instead of dummies.
>     # The results are exactly the same as those above, as should be.
>     mydata$factor1 <- as.factor(mydata$occasion)
>     unstruc.gls2 <- gls(test ~ factor1,
>                          method="REML", data=mydata,
>                          correlation=corSymm(form = ~ 1|person),
>                          weights = varIdent(form = ~1|factor1))
>     summary(unstruc.gls2)
>
>
>     # Unstructured model using lmer and dummies for occasion: does not
>     converge.
>     unstruc.lmer <- lmer(test ~ 1+ occ2 + occ3 + (1+occ2+occ3|person),
>                           data=mydata, REML=TRUE)
>     summary(unstruc.lmer)
>
>
>     # Unstructured model using lmer and factor1 for occasion: does not
>     converge.
>     unstruc.lmer <- lmer(test ~ 1+ factor1 + (1+factor1|person),
>                           data=mydata, REML=TRUE)
>     summary(unstruc.lmer)
>
>
>     # Unstructured model using lmer and factor1 for occasion, no intercept
>     specified: does not converge.
>     unstruc.lmer <- lmer(test ~ factor1 + (factor1|person),
>                           data=mydata, REML=TRUE)
>     summary(unstruc.lmer)
>
>
>
>     On 21/03/2018 13:07, Maarten Jung wrote:
>     > Dear Ben,
>     >
>     > I am a bit puzzled.
>     >
>     > Do you mean that
>     >
>     > m1 <- gls(value ~ factor1, data, correlation = corSymm(form = ~
>     > 1|participant), weights = varIdent(form = ~ 1|factor))
>     >
>     > would be equivalent to
>     >
>     > m2 <- lmer(value ~ factor1 + (factor1|participant), data)
>     >
>     > and one should use gls() because it allows for the same covariance
>     > structures as /REPEATED does?
>     >
>
>
>     the two specifications are not equivalent in the sense that lmer also
>     tries to estimate residual variance. However, with the given lmer
>     model
>     specification, the random factor1 effects capture all variance
>     there is
>     and no residual variance remains.
>
>
>     > And, if so, why should m2 cause an identification problem and m1
>     doesn't?
>     >
>     > Regards,
>     > Maarten
>     >
>     Regards, Ben.
>
>
>
>     >
>     > On Wed, Mar 21, 2018 at 12:03 PM, Ben Pelzer <b.pelzer at maw.ru.nl
>     <mailto:b.pelzer at maw.ru.nl>
>     > <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>> wrote:
>     >
>     >     Dear all,
>     >
>     >     As far as I know, the specification for lmer using
>     >
>     >          value ~ factor1 + (factor1 | participant)
>     >
>     >     causes an identification problem, because the residual
>     variance is not
>     >     excluded from the estimations. It would indeed work (e.g. in
>     MlWin
>     >     this
>     >     can be done) if we could constrain that residual variance to
>     zero.
>     >     There
>     >     have been some mails in this list about whether or not
>     constraining
>     >     residual variance to zero is possible in lmer, but I believe
>     this
>     >     is not
>     >     possible. Would be nice if we could do this in lmer!
>     >
>     >     Best regards, Ben.
>     >
>     >
>     >     On 20-3-2018 18:34, Douglas Bates wrote:
>     >     > Kind of looks like SPSS went for bug-for-bug compatibility
>     with
>     >     SAS on
>     >     > this one.  In SAS PROC MIXED, "REPEATED" and "RANDOM" are two
>     >     ways of
>     >     > specifying the random effects variance structure but they
>     often boil
>     >     > down to the same model.
>     >     >
>     >     > I believe the model can be specified in lme4 as
>     >     >
>     >     >     value ~ factor1 + (factor1 | participant)
>     >     >
>     >     > This is what the mis-named* "UNSTRUCTURED" covariance type
>     means
>     >     >
>     >     > * Old-guy, get off my lawn rant about terminology *
>     >     > As a recovering mathematician I find the name
>     "unstructured" being
>     >     > used to denote a positive-definite symmetric matrix to be,
>     well,
>     >     > inaccurate.
>     >     >
>     >     > On Tue, Mar 20, 2018 at 12:19 PM Mollie Brooks
>     >     > <mollieebrooks at gmail.com <mailto:mollieebrooks at gmail.com>
>     <mailto:mollieebrooks at gmail.com <mailto:mollieebrooks at gmail.com>>
>     >     <mailto:mollieebrooks at gmail.com
>     <mailto:mollieebrooks at gmail.com> <mailto:mollieebrooks at gmail.com
>     <mailto:mollieebrooks at gmail.com>>>>
>     >     wrote:
>     >     >
>     >     >     I don’t know anything about spss, but if you basically
>     want lme4
>     >     >     with more correlation structures, you could look at the
>     >     structures
>     >     >     available with glmmTMB.
>     >     >
>     >
>     https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html
>     <https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html>
>     >   
>      <https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html
>     <https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html>>
>     >     >
>     >     >     cheers,
>     >     >     Mollie
>     >     >
>     >     >     > On 20Mar 2018, at 18:11, Ben Pelzer
>     <b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>
>     >     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>>> wrote:
>     >     >     >
>     >     >     > Hi Maarten,
>     >     >     >
>     >     >     > You are right: you need nlme and NOT lme4 to specify
>     >     particular
>     >     >     > correlation structures. Also, in nlme you would need gls
>     >     to make it
>     >     >     > similar to mixed in spss. The repeated command in spss
>     >     gives the
>     >     >     same
>     >     >     > results as gls does for any of the covariance
>     structures.
>     >     >     >
>     >     >     > Regards, Ben.
>     >     >     >
>     >     >     >
>     >     >     > On 20/03/2018 17:30, Maarten Jung wrote:
>     >     >     >> Dear Ben, dear Phillip,
>     >     >     >>
>     >     >     >> comparing [1] with [2] I think the /REPEATED command
>     >     specifies
>     >     >     >> the error (co)variance structure of the model.
>     Would you
>     >     agree
>     >     >     with that?
>     >     >     >> If so, AFAIK this is not possible with lmer and
>     thus the
>     >     answer on
>     >     >     >> Stack Overflow [3] would be wrong.
>     >     >     >>
>     >     >     >> [1]
>     >     >     >>
>     >     >
>     >
>     https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>
>     >   
>      <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>>
>     >     >     >> [2]
>     >     >     >>
>     >     >
>     >
>     https://stats.idre.ucla.edu/spss/examples/alda/chapter7/applied-longitudinal-data-analysis-modeling-change-and-event-occurrenceby-judith-d-singer-and-john-b-willett-chapter-7-examining-the-multilevel-model-s-erro/
>     <https://stats.idre.ucla.edu/spss/examples/alda/chapter7/applied-longitudinal-data-analysis-modeling-change-and-event-occurrenceby-judith-d-singer-and-john-b-willett-chapter-7-examining-the-multilevel-model-s-erro/>
>     >   
>      <https://stats.idre.ucla.edu/spss/examples/alda/chapter7/applied-longitudinal-data-analysis-modeling-change-and-event-occurrenceby-judith-d-singer-and-john-b-willett-chapter-7-examining-the-multilevel-model-s-erro/
>     <https://stats.idre.ucla.edu/spss/examples/alda/chapter7/applied-longitudinal-data-analysis-modeling-change-and-event-occurrenceby-judith-d-singer-and-john-b-willett-chapter-7-examining-the-multilevel-model-s-erro/>>
>     >     >     >> [3]
>     >     >     >>
>     >     >
>     >
>     https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>
>     >   
>      <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>>
>     >     >     >>
>     >     >     >> Regards,
>     >     >     >> Maarten
>     >     >     >>
>     >     >     >> On Tue, Mar 20, 2018 at 2:10 PM, Ben Pelzer
>     >     <b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>
>     >     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>>
>     >     >     >> <mailto:b.pelzer at maw.ru.nl
>     <mailto:b.pelzer at maw.ru.nl> <mailto:b.pelzer at maw.ru.nl
>     <mailto:b.pelzer at maw.ru.nl>>
>     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>>
>     >     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>
>     >     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>
>     <mailto:b.pelzer at maw.ru.nl <mailto:b.pelzer at maw.ru.nl>>>>>> wrote:
>     >     >     >>
>     >     >     >>    Dear Maarten,
>     >     >     >>
>     >     >     >>    Take a look at
>     >     >     >>
>     >     >     >>
>     >     >
>     >
>     https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>
>     >   
>      <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>>
>     >     >
>     >     
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>
>     >   
>      <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>>>
>     >     >     >>
>     >     >
>     >     
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>
>     >   
>      <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>>
>     >     >
>     >     
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>
>     >   
>      <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/
>     <https://stats.idre.ucla.edu/r/examples/alda/r-applied-longitudinal-data-analysis-ch-7/>>>>
>     >     >     >>
>     >     >     >>    which shows you a number of covariance
>     structures, among
>     >     >     which is
>     >     >     >>    the unstructured matrix, for repeated measures in R
>     >     with lme. It
>     >     >     >>    refers to chapter 7 of Singer and Willett where they
>     >     discuss all
>     >     >     >>    these different structures and how to choose
>     among them.
>     >     >     Regards,
>     >     >     >>
>     >     >     >>    Ben.
>     >     >     >>
>     >     >     >>    On 20-3-2018 9:00, Maarten Jung wrote:
>     >     >     >>
>     >     >     >>        Dear list,
>     >     >     >>        I came across a SPSS syntax like this
>     >     >     >>
>     >     >     >>        MIXED value BY factor1
>     >     >     >>  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10)
>     >     SCORING(1)
>     >     >     >> SINGULAR(0.000000000001)
>     >     >     >>             HCONVERGE(0, ABSOLUTE) LCONVERGE(0,
>     ABSOLUTE)
>     >     >     >>        PCONVERGE(0.000001,
>     >     >     >>             ABSOLUTE)
>     >     >     >>             /FIXED=factor1 | SSTYPE(3)
>     >     >     >>             /METHOD=REML
>     >     >     >>  /REPEATED=factor1 | SUBJECT(participant)
>     >     COVTYPE(UN).
>     >     >     >>
>     >     >     >>        and struggle to find an equivalent lmer/nlme
>     (or R in
>     >     >     general)
>     >     >     >>        formulation
>     >     >     >>        for this kind of models.
>     >     >     >>        Does anybody know how to convert the REPEATED
>     >     subcommand
>     >     >     into
>     >     >     >>        R code?
>     >     >     >>
>     >     >     >>        Please note that I asked the question on Stack
>     >     Overflow
>     >     >     about
>     >     >     >>        two month ago:
>     >     >     >>
>     >     >
>     >
>     https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>
>     >   
>      <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>>
>     >     >
>     >     
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>
>     >   
>      <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>>>
>     >     >     >>
>     >     >
>     >     
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>
>     >   
>      <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>>
>     >     >
>     >     
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>
>     >   
>      <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc
>     <https://stackoverflow.com/questions/48518514/what-is-the-lmer-nlme-equivalent-of-the-repeated-subcommand-in-spsss-mixed-proc>>>>
>     >     >     >>
>     >     >     >>        Best regards,
>     >     >     >>        Maarten
>     >     >     >>
>     >     >     >> [[alternative HTML version deleted]]
>     >     >     >>
>     >     >     >> _______________________________________________
>     >     >     >> R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>>
>     >     >     >>        <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>>> mailing list
>     >     >     >>
>     https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>>
>     >     >     >>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>>>
>     >     >     >>
>     >     >     >>
>     >     >     >> _______________________________________________
>     >     >     >> R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>>
>     >     >     >>    <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>>> mailing list
>     >     >     >>
>     https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>>
>     >     >     >>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>>>
>     >     >     >>
>     >     >     >>
>     >     >     >
>     >     >     >
>     >     >     >       [[alternative HTML version deleted]]
>     >     >     >
>     >     >     > _______________________________________________
>     >     >     > R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>>> mailing list
>     >     >     >
>     https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >   
>      <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>>
>     >     >
>     >     >             [[alternative HTML version deleted]]
>     >     >
>     >     >     _______________________________________________
>     >     > R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>
>     >     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>>> mailing list
>     >     > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >     >
>     >
>     >
>     >             [[alternative HTML version deleted]]
>     >
>     >     _______________________________________________
>     > R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>
>     >     <mailto:R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org>> mailing list
>     > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>     >     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>>
>     >
>     >
>
>
>             [[alternative HTML version deleted]]
>
>     _______________________________________________
>     R-sig-mixed-models at r-project.org
>     <mailto:R-sig-mixed-models at r-project.org> mailing list
>     https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>     <https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models>
>
>


	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list