[R-sig-ME] subjects within groups and effects of group

Thierry Onkelinx thierry.onkelinx at inbo.be
Fri Jan 19 10:44:39 CET 2018


Dear Pam,

You are handling condition and subject correctly.

There might be a problem with trial. Does trial indicates dependent
replication of the study? Is there a common effect of trial X for all
subjects? Because that is what your current model assumes. In case the
trials are independent, then you don't need to include it in the
model.

Note that Condition + PzAlpha + PzAlpha*Condition is verbose. You can
write it as PzAlpha*Condition.

Best regards,

ir. Thierry Onkelinx
Statisticus / Statistician

Vlaamse Overheid / Government of Flanders
INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE
AND FOREST
Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
thierry.onkelinx op inbo.be
Havenlaan 88 bus 73, 1000 Brussel
www.inbo.be

///////////////////////////////////////////////////////////////////////////////////////////
To call in the statistician after the experiment is done may be no
more than asking him to perform a post-mortem examination: he may be
able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does
not ensure that a reasonable answer can be extracted from a given body
of data. ~ John Tukey
///////////////////////////////////////////////////////////////////////////////////////////




2018-01-18 18:51 GMT+01:00 P Greenwood <pgreenw1 op gmu.edu>:
> Hello
>
> I wanted some advice about handling subjects within groups and effects of group (randomly assigned).  I want to predict reaction time (RT) as a function of  “Condition,”  alpha band power (PzAlpha), and drive. People (subjects) are randomly assigned to Condition, of which there are two.  Each person has data from 5 drives, and for each drive there are 10 trials.  There are 19 subjects in one group and 20 in the other.
>
> My question is this: Am I handling the “between subjects” factor of Condition correctly?  Also, am I treating subjects within group correctly?  I am pasting in some of my data.  The output is below.
>
> Regards
>
> Pam Greenwood
>
> library(lme4)
> library(lmerTest)
> INFAST_Behavioral <- read.csv(“….
> na.omit(INFAST_Behavioral)
> INFAST_Behavioral$RT = scale(INFAST_Behavioral$RT, center = TRUE, scale = TRUE)
> INFAST_Behavioral$PzAlpha = scale(INFAST_Behavioral$PzAlpha, center = TRUE, scale = TRUE)
> sumModelInteraction <- lmer(RT ~ 1 + (Condition + PzAlpha + Drive + PzAlpha*Condition) + (1 | subject) + (1 | trial), data = INFAST_Behavioral)
> summary(sumModelInteraction)
>
> subject Condition               Drive           trial   FzAlpha CzAlpha PzAlpha FzTheta CzTheta PzTheta FzDelta CzDelta PzDelta         RT      ACC
> 1       HumanLanguage   1       1       -1.41   -4.3585 -5.5431 6.1516  1.5911  3.6247  22.38   18.181  13.812          1568.984857     1
> 1       HumanLanguage   1       2       -7.8605 2.0156  4.7392  15.992  12.122  6.9088  26.861  20.592  16.326  1721.359714     1
> 1       HumanLanguage   1       3       -2.6982 -5.6067 -10.038 6.285   5.5172  1.2894  13.565  12.981  11.63   1257.092571     1
> 1       HumanLanguage   1       4       3.3975  4.8789  -1.3249 7.0177  9.6703  6.1539  10.231  12.261  12.485  1559.461429     1
> …(skipping to Subject 2)
> 2       HumanLanguage                   1       1       1.6791  2.8887  0.28174 -11.387 -9.9352 3.5936  -1.5767 3.9401  6.7201          1302.328857     1
> 2       HumanLanguage   1       2       -13.284 -8.2603 -6.6124 -5.9373 -8.7551 0.10394 4.5621  10.204  12.261  969.0088571     1
> 2       HumanLanguage   1       3       -0.048973       1.1329  0.67399 -2.1432 2.5077  -2.4641 9.4667  10.883  7.1396  721.3997143     1
> 2       HumanLanguage   1       4       5.0779  6.8916  6.3892  -1.8682 3.1637  7.9712  8.0994  10.883  10.975  707.1145714     1
> 2       HumanLanguage   1       5       -7.0495 -2.782  3.1668  8.4332  10.646  9.3726  -3.5937 -7.3769 5.4472  892.8214286     1
> 2       HumanLanguage   1       6       -1.462  -8.1223 -6.5896 -10.895 -5.6311 0.39941 7.5473  12.783  14.698  611.8802857     1
> 2       HumanLanguage   1       7       -2.6402 -5.1213 -3.7372 3.4542  4.2234  -0.99898        1.4089  4.1976  0.56587 761.8742857     1
> 2       HumanLanguage   1       8       3.4393  4.6302  1.5525  1.4604  3.1716  3.1622  -2.3427 2.908   4.2259  680.9251429     1
> 2       HumanLanguage   1       9       -0.81024        -0.21642        -2.3876 2.5839  4.7307  1.5441  3.3761  8.4485  12.02   769.0168571     1
> 2       HumanLanguage   1       10      -6.4045 -4.4937 -2.2449 0.94456 2.7048  0.65565 -1.9791 0.26436 1.8435  885.6788571     1
>
> Results:
>
> Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [
> lmerMod]
> Formula: RT ~ 1 + (Condition + PzAlpha + Drive + PzAlpha * Condition) +
>     (1 | subject) + (1 | trial)
>    Data: INFAST_Behavioral
>
> REML criterion at convergence: 3876.4
>
> Scaled residuals:
>     Min      1Q  Median      3Q     Max
> -3.4308 -0.5227 -0.1194  0.3547  8.4095
>
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  subject  (Intercept) 0.580073 0.76163
>  trial    (Intercept) 0.004778 0.06912
>  Residual             0.434918 0.65948
> Number of obs: 1839, groups:  subject, 39; trial, 10
>
> Fixed effects:
>                                          Estimate               Std. Error         df t value Pr(>|t|)
> (Intercept)                        -0.27054    0.17607   40.80000  -1.537  0.13213
> ConditionMachineLang 0.41644    0.24595   36.90000   1.693  0.09884 .
> PzAlpha                             0.01192    0.02411 1797.40000   0.494  0.62117
> Drive                               0.02948    0.01083 1788.40000   2.722  0.00655 **
> ConditionMachineLanguage:PzAlpha   -0.01998    0.03476 1803.10000  -0.575  0.56560
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> P.M. Greenwood, Ph.D.
> Associate Professor of Psychology
> Editorial Board, NeuroImage
> David King Hall 2052
> George Mason University
> MSN 3F5, 4400 University Drive
> Fairfax, VA 22030-4444
>
> Ph: 703 993-4268
> fax: 703 993-1359
> email: Pgreenw1 op gmu.edu
> http://psychology.gmu.edu/people/pgreenw1
>
>
>         [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models op r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models



More information about the R-sig-mixed-models mailing list