[R-sig-ME] package "ordinal" - failure to converge and slow calculations
Diana Michl
dmichl at uni-potsdam.de
Sun Oct 23 21:01:49 CEST 2016
Dear Rune Haubo,
I'm using 'ordinal' to model my data - thank you for making it possible!
But I'm running into a problem and would be very grateful for any
response on this.
I have an ordered rating response ranging from 1-5 (Wert). The
predictors are sex (M_W), origin (Richtung), education (Bildung2), and
age (Alter) of the participants who rated 122-244 items (ItemId). Age is
numeric, the rest is helmert or sum-contrast coded, Wert is an ordered
factor. Please see the table below.
Now, I have 3 more data tables that look practically the same and the
models run okay with those. But with the one below and this code:
ord.allnwo <- clmm(Wert ~ M_W + Alter + Richtung + Bildung2 + (1|ItemId)
+ (1|Id), data=spnwounsc, model=T, Hess=T,
link="logit", na.action=na.omit, threshold="flexible",
control=clmm.control(grtol=1e-6))
I always get the message "Error: optimizer nlminb failed to converge". I
tried changing the command "control=clmm.control(grtol=5e-4))" to
numbers between 5e-4 and 1e-9, as you suggested to someone else with the
same problem. Changing the optimizer to'ucminf' is impossible, according
to the R error message.
head(spnwounsc) X Id M_W Alter Bundesl Richtung Bildung Liste beide.L ItemId Wert Bildung2
1 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 1 3 c
2 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 2 5 c
3 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 3 5 c
4 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 4 4 c
5 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 5 4 c
6 1 265 2 55 Ba-Wue 3 Hoch/Fachhochschul 2 ja 6 5 c
.
.
.
770 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 38 2
771 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 39 3
772 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 40 1
773 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 41 5
774 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 42 5
775 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 43 1
776 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 44 3
777 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 45 4
778 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 46 <NA>
779 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 47 <NA>
780 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 48 <NA>
781 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 49 <NA>
782 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 50 <NA>
783 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 51 <NA>
784 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 52 <NA>
785 4 273 1 46 Hamburg 1 Hoch/Fachhochschul 1 nein 53 <NA>
.
.
.
Do you know what's going on and how I can remedy this?
Also, R takes several minutes until it finally spits out either model or
error message. Is this a reason to worry, maybe indicating false
results? Or is it only because my data frames contains 26000-31000 rows?
Many thanks in advance and kindregards
Diana Michl
--
Diana Michl, M.A.
PhD candidate
International Experimental
and Clinical Linguistics
Universität Potsdam
www.ling.uni-potsdam.de/staff/dmichl
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list