[R-sig-ME] Saving object into a Matrix/List

Marko Bachl marko.bachl at uni-hohenheim.de
Mon Feb 29 19:52:49 CET 2016

Hi Nicolas,
I guess drop1(fitted_model, test = "Chisq") will give you the desired
result for omitting each term:

fm <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
drop1(fm, test = "Chisq")

If you want to make more adjustments, you could save the fitted models
to a list and then use do.call():
fm_list = list()
fm_list[1] <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
fm_list[2] <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
do.call("anova", fm_list)

Best regards

2016-02-29 15:49 GMT+01:00 OLANO NO Nicolas (Exterieur.DCL)
<nicolas.no.olano at dexia.com>:
> Hello,
> First of all, thank you very much for the package!
> I'm using the new version of lme4 and the function glmer and I would like to know if you could help me with one doubt.
> I want to compute the likelihood ratio test p value for each variable  (normally two or three variables) so run gm_original <- glmer (...~ X1 +  X2...), then gm_minus_X1 <- glmer (...~ X1...), finally anova(gm_original, gm_minus_X1).
> As I have to compute it in a for loop with a lot of combinations of  variables, I would like to know if there is any way to save the  results (gm_original) into a matrix or list to then use them to calculate the  p values (when I add the objet to a list, and then I to run an anova,  I receive the error that it cannot be computed from a list objet).
> Furthermore, is there any more efficient way to compute the likelihood  ratio test p value ?
> Thank you very much,
> Regards,
> Nicolas Olano
> Risk Quantification & Pricing
> Dexia Group
> (+32) (0)2 213 5873
> -------------------------------------------------------------------------
> Dexia disclaimer:
> http://www.dexia.com/maildisclaimer.htm <http://www.dexia.com/maildisclaimer.htm>
> -------------------------------------------------------------------------
>         [[alternative HTML version deleted]]
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models

Dr. Marko Bachl
Universität Hohenheim
Institut für Kommunikationswissenschaft (540C)
T 0711 459 228 66
M marko.bachl at uni-hohenheim.de
W www.komm.uni-hohenheim.de/bachl

More information about the R-sig-mixed-models mailing list