[R-sig-ME] metafor - Appropriate heterogeneity estimator when heterogeneity is extreme
Theodore Lytras
thlytras at gmail.com
Mon May 25 12:49:04 CEST 2015
Hello everyone,
Sorry if this is not the right forum.
I am undertaking a meta-regression using the metafor package, with six binary
predictors and no intercept (I am only interested in the coefficients, not in
the pooled effect). I have a sufficient number of studies (N=52), and the
study effects (log Risk Ratios) show substantial left skew when plotted on a
normal plot.
The problem is that I get very different estimates for tau^2 (and therefore
quite different SEs for the regression coefficients) depending on whether I
use the DerSimonian-Laird (DL) estimator or the REML estimator.
In both cases heterogeneity is extreme (I^2>99, H^2>150), but t^2 is twice as
big with REML (0.1901) than with DL (0.0805).
Could someone give me any clues as to which estimator may be more appropriate
in such a situation?
Also, what may be the cause of such greatly divergent estimates? Is it the
heterogeneity? The non-normal distribution of study effects? Or something
else?
Here's the output:
> rma.uni(yi=logRR, sei=SElogRR, mods=cbind(e1,e2,e3,e4,e5,e6),
intercept=FALSE, method="DL", data=a)
Mixed-Effects Model (k = 52; tau^2 estimator: DL)
tau^2 (estimated amount of residual heterogeneity): 0.0805 (SE = 0.0387)
tau (square root of estimated tau^2 value): 0.2837
I^2 (residual heterogeneity / unaccounted variability): 99.46%
H^2 (unaccounted variability / sampling variability): 185.55
Test for Residual Heterogeneity:
QE(df = 46) = 8535.3517, p-val < .0001
Test of Moderators (coefficient(s) 1,2,3,4,5,6):
QM(df = 6) = 314.3132, p-val < .0001
Model Results:
estimate se zval pval ci.lb ci.ub
e1 -0.1973 0.0775 -2.5476 0.0108 -0.3491 -0.0455 *
e2 -0.1679 0.0825 -2.0358 0.0418 -0.3296 -0.0063 *
e3 -0.0413 0.0774 -0.5327 0.5942 -0.1930 0.1105
e4 -0.1241 0.0990 -1.2539 0.2099 -0.3181 0.0699
e5 -0.4916 0.1320 -3.7239 0.0002 -0.7503 -0.2329 ***
e6 -1.6907 0.1064 -15.8893 <.0001 -1.8992 -1.4821 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> rma.uni(yi=logRR, sei=SElogRR, mods=cbind(e1,e2,e3,e4,e5,e6),
intercept=FALSE, method="REML", data=a)
Mixed-Effects Model (k = 52; tau^2 estimator: REML)
tau^2 (estimated amount of residual heterogeneity): 0.1901 (SE = 0.0411)
tau (square root of estimated tau^2 value): 0.4360
I^2 (residual heterogeneity / unaccounted variability): 99.77%
H^2 (unaccounted variability / sampling variability): 437.00
Test for Residual Heterogeneity:
QE(df = 46) = 8535.3517, p-val < .0001
Test of Moderators (coefficient(s) 1,2,3,4,5,6):
QM(df = 6) = 142.3333, p-val < .0001
Model Results:
estimate se zval pval ci.lb ci.ub
e1 -0.1987 0.1175 -1.6913 0.0908 -0.4289 0.0316 .
e2 -0.1695 0.1243 -1.3638 0.1726 -0.4132 0.0741
e3 -0.0491 0.1165 -0.4212 0.6736 -0.2774 0.1793
e4 -0.1184 0.1502 -0.7880 0.4307 -0.4127 0.1760
e5 -0.5140 0.1954 -2.6304 0.0085 -0.8970 -0.1310 **
e6 -1.6950 0.1588 -10.6722 <.0001 -2.0063 -1.3837 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
For completeness, I checked the other heterogeneity estimators available in
metafor. Most are close to REML, expect Hunter-Schmidt (HS) which gives an
even lower tau^2 than DL.
method tau2 I2 H2
DL DL 0.080 99.46 185.55
HS HS 0.036 98.81 84.07
HE HE 0.190 99.77 435.58
ML ML 0.167 99.74 384.58
REML REML 0.190 99.77 437.00
EB EB 0.190 99.77 437.01
PM PM 0.190 99.77 437.01
SJ SJ 0.195 99.78 447.29
Thank you very much,
Theodore Lytras
More information about the R-sig-mixed-models
mailing list