[R-sig-ME] Logistic modelling with guessing parameter
Ken Knoblauch
ken.knoblauch at inserm.fr
Fri May 8 00:28:38 CEST 2015
Peter Harrison <pharr011 at ...> writes:
<< snip >>
> I've been using a script kindly posted by Ken Knoblauch
back in 2010
> (https://stat.ethz.ch/pipermail/r-sig-mixed-models
/2010q4/004531.html) to achieve this using
> (1|p_ID). But when I do this, I get the following
error message: (maxstephalfit) PIRLS step-halvings
> failed to reduce deviance in pwrssUpdate.
You ought to be able to use the link directly from
the psyphy package. A lot has changed with lme4
and a little with psyphy so that the modification from
then isn't necessary.
When I try your problem, I get
library(lme4)
library(psyphy)
data <- read.csv("https://dl.dropboxusercontent.com/
s/szq2e2sxwfsuxo6/data.csv", header = TRUE)
mod1 <- glmer(responses ~ accuracy + (1|p_ID),
family = binomial(mafc.logit(2)), data=data)
summary(mod1)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( mafc.logit(2) )
Formula: responses ~ accuracy + (1 | p_ID)
Data: data
AIC BIC logLik deviance df.resid
6742.6 6762.8 -3368.3 6736.6 6180
Scaled residuals:
Min 1Q Median 3Q Max
-3.9571 -1.1363 0.4520 0.6233 0.9299
Random effects:
Groups Name Variance Std.Dev.
p_ID (Intercept) 0.4454 0.6674
Number of obs: 6183, groups: p_ID, 229
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.1656 0.2771 15.03 <2e-16 ***
accuracy -5.6355 0.3772 -14.94 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
accuracy -0.971
with no errors
> Thanks so much!
> Peter
>
More information about the R-sig-mixed-models
mailing list