[R-sig-ME] Ordinal data analysis with MCMCglmm

Luka Rubinjoni rubinjoni at gmail.com
Wed Feb 11 15:13:59 CET 2015


Dear list members,

	I'm trying to analyze ordinal data with MCMCglmm, but I keep getting
inconsistent results. I'm a biologist with no experience in Bayesian
inference and mixed models, these are my first attempts...

	I'm exploring herbivory load on a dioecious plant (separate male and
female sex). I used leaf damage as an estimate of herbivory load, by
assigning each leaf with a 1 (no damage) to 4 (heavy/severe damage)
score. I have sampled about 500 plants from 12 locations, and have about
10 leaves per plant. Plants do not have a constant number of leaves, it
ranges from 6 to 17. All plants were collected from natural habitats -
there was no experimental setup for a full factorial design. Also,
uneven number of plants was sampled from various locations.

	I wish to determine if one of the sexes (male or female) is more
susceptible to herbivore damage. I would also like to compare sites
according to the observed damage, and explore sex*site interaction.
Further, I would like to see if some other plant traits (except sex)
have an impact on herbivory: plant height, plant mass, leaf number, leaf
mass, flower/fruit mass & number, reproductive allocation...

	I tried running MCMCglmm procedure with the default prior (without
declaring the prior), but I get awkward results (negative DICs, large
differences in DICs between runs...). I'm not sure if I'm making any
other mistakes, too. Do you have any suggestions for the prior
specification?

Best regards,
Luka Rubinjoni
Faculty of Biology, University of Belgrade

P.S. Here's summary of the data, and output from one of the models:

> summary(skorovi)
       ID           LeafID     score          N
 K24M   :  17   Min.   :   1   1:2248   Min.   : 6.00
 M9M    :  17   1st Qu.:1480   2:2982   1st Qu.:10.00
 J10M   :  16   Median :2960   3: 564   Median :11.00
 K18M   :  16   Mean   :2960   4: 124   Mean   :11.35
 M17F   :  16   3rd Qu.:4439            3rd Qu.:12.00
 M19M   :  16   Max.   :5918            Max.   :17.00
 (Other):5820
     PlantH         FlowerN       InternodeN
 Min.   : 94.0   Min.   : 1.0   Min.   : 4.000
 1st Qu.:204.0   1st Qu.: 5.0   1st Qu.: 5.000
 Median :231.0   Median :11.0   Median : 6.000
 Mean   :233.7   Mean   :15.6   Mean   : 6.131
 3rd Qu.:265.0   3rd Qu.:24.0   3rd Qu.: 7.000
 Max.   :398.0   Max.   :68.0   Max.   :10.000

     PlantM           LeafM        Sex           Site
 Min.   :0.1690   Min.   :0.1170   F:2891   A2S    : 875
 1st Qu.:0.4760   1st Qu.:0.2950   M:3027   A      : 805
 Median :0.6120   Median :0.3910            K      : 784
 Mean   :0.6816   Mean   :0.4316            M      : 566
 3rd Qu.:0.8500   3rd Qu.:0.5310            DJ     : 479
 Max.   :2.3020   Max.   :1.5610            P      : 454
                                            (Other):1955
       RA           InfloresenceN      FlowerM
 Min.   :0.001348   Min.   :1.000   Min.   :0.00100
 1st Qu.:0.011674   1st Qu.:4.000   1st Qu.:0.00700
 Median :0.024943   Median :4.000   Median :0.01700
 Mean   :0.065849   Mean   :4.492   Mean   :0.04613
 3rd Qu.:0.097990   3rd Qu.:5.000   3rd Qu.:0.05600
 Max.   :0.838617   Max.   :9.000   Max.   :0.56100
                    NA's   :2891

CMC200kIDSite <- MCMCglmm(score~Sex, ~ID+Site, rcov=~units,
family="ordinal", data=skorovi, DIC=TRUE, nitt=200000, thin=100,
burnin=5000)

...
 MCMC iteration = 200000

  Acceptance ratio for latent scores = 0.897869
 Acceptance ratio for cutpoint set 1 = 0.779000

> summary(MCMC200kIDSite)

 Iterations = 5001:199901
 Thinning interval  = 100
 Sample size  = 1950

 DIC: -9100.507

 G-structure:  ~ID

   post.mean l-95% CI u-95% CI eff.samp
ID     12.02   0.3165    24.33    1.436

               ~Site

     post.mean l-95% CI u-95% CI eff.samp
Site     17.89   0.1927    52.11    5.023

 R-structure:  ~units

      post.mean l-95% CI u-95% CI eff.samp
units     40.44    0.198    80.42    1.478

 Location effects: score ~ Sex

            post.mean l-95% CI u-95% CI eff.samp  pMCMC
(Intercept)   2.38948  0.01827  5.96931    5.605 0.0359 *
SexM          0.11478 -0.64723  0.90102 1950.000 0.7426
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Cutpoints:
                      post.mean l-95% CI u-95% CI eff.samp
cutpoint.traitscore.1     10.74    2.051    16.73    1.347
cutpoint.traitscore.2     16.79    3.203    26.18    1.323

> autocorr(MCMC200kIDSite$Sol)
, , (Intercept)

         (Intercept)       SexM
Lag 0      1.0000000 0.02834661
Lag 100    0.4652665 0.12773192
Lag 500    0.4637719 0.12885704
Lag 1000   0.4608056 0.10518225
Lag 5000   0.4426579 0.10261122

, , SexM

         (Intercept)        SexM
Lag 0     0.02834661 1.000000000
Lag 100   0.10172481 0.000939134
Lag 500   0.13601706 0.003533253
Lag 1000  0.13280788 0.040197635
Lag 5000  0.11814053 0.070899772

> autocorr(MCMC200kIDSite$VCV)
, , ID

                ID      Site     units
Lag 0    1.0000000 0.7125238 0.9873699
Lag 100  0.9770221 0.7118302 0.9862788
Lag 500  0.9692561 0.7054513 0.9799585
Lag 1000 0.9644127 0.6951924 0.9737191
Lag 5000 0.9104725 0.6701422 0.9193135

, , Site

                ID      Site     units
Lag 0    0.7125238 1.0000000 0.7214728
Lag 100  0.7095693 0.4868717 0.7170873
Lag 500  0.7028373 0.5282474 0.7136912
Lag 1000 0.7045606 0.5254454 0.7081390
Lag 5000 0.6686113 0.4824315 0.6739685

, , units

                ID      Site     units
Lag 0    0.9873699 0.7214728 1.0000000
Lag 100  0.9864973 0.7192773 0.9971748
Lag 500  0.9810497 0.7137308 0.9910396
Lag 1000 0.9743296 0.7063965 0.9838989
Lag 5000 0.9213108 0.6722353 0.9303135



More information about the R-sig-mixed-models mailing list