[R-sig-ME] Partial R2 in mixed models
Joan Molibo
joanmolibo at gmail.com
Mon Nov 24 15:12:11 CET 2014
Finally, I have found this work An R^2 statistics for fixed effects in the
linear mixed model. Stat Med 2008 28: 6137, which has been of great help.
R2.mmixed <- function(model, d = 5){
require(pbkrtest)
term <- attr(terms(model), "term.labels")
n.term <- length(term)
form <- paste(paste(".~ 1 + (1 |", names(ngrps(model)), sep = ""), ")",
sep = "")
m.null <- update(model, as.formula(form))
kr <- KRmodcomp(model, m.null)[[1]]
R2 <- kr[1, 1] * kr[1, 3]^(-1) * length(term)/(1 + kr[1, 1] * kr[1,
3]^(-1) * n.term)
R2 <- round(R2 * 100, d)
aov.model <- Anova(model, test.statistic = "F", type = 3)
p.R2 <- numeric(n.term)
for (i in 1:n.term){
p.R2[i] <- aov.model[i+1, 1] * (aov.model[i+1, 3])^(-1) *
aov.model[i+1, 2]/(1 + aov.model[i+1, 1] * (aov.model[i+1, 3])^(-1) *
aov.model[i+1, 2])
}
p.R2 <- matrix(round(p.R2*100, d), ncol = 1);
rownames(p.R2) <- term
colnames(p.R2) <- "Estimate"
l <- list("Model R-squared (fix effects)" = R2, "Partial R-squared" =
p.R2)
return(l)
}
2014-11-21 12:06 GMT+01:00 Joan Molibo <joanmolibo at gmail.com>:
> Sorry, yesterday I tried to generalize the function without get it
> completely, so I have corrected some mistakes.
>
> Below there is a corrected version.
>
> And, please, apologize my audacity.
>
> =======================================
>
> partialR2 <- function(model){
> # Based on SS
> term <- attr(terms(model), "term.labels")
> dv <- gsub(" ", "", gsub("(.*)~.*", "\\1", as.character(model at call)[2]))
> ss.tot <- sum((model at frame[, dv] - mean(model at frame[, dv]))^2)
> n <- length(term)
> ss.var <- numeric(n)
> form <- unlist(lapply(term, function(x) paste(paste(".~. -", x, sep =
> ""), x, sep = "+")))
>
> inter.term <- FALSE
>
> if (sum(unlist(sapply(term, function(x) grep(":", x)))) >= 1 |
> sum(unlist(sapply(term, function(x) grep("*", x)))) >= 1)
> inter.term = TRUE
>
> if (inter.term == TRUE){
> for (i in 1:(n-1)){
> sub.model <- update(model, as.formula(form[i]))
> ss.var[i] <- as.data.frame(anova(sub.model))[n-1, 2]
> }
> ss.var[n] <- as.data.frame(anova(sub.model))[n, 2]
> }else{
> for (i in 1:(n)){
> sub.model <- update(model, as.formula(form[i]))
> ss.var[i] <- as.data.frame(anova(sub.model))[n, 2]
> }
> }
>
> names(ss.var[n]) <- term[n]
> out <- cbind(round(100 * ss.var/ss.tot, 5))
> rownames(out) <- term
> colnames(out) <- "Partial R2"
>
> #Snijder (it gives zero for the interaction components, to find the
> values
> #update the models without them.
>
> form <- paste(paste(".~ 1 + (1 |", names(ngrps(model)), sep = ""), ")",
> sep = "")
> m.null <- update(model, as.formula(form))
> var.g.null <- VarCorr(m.null)[[1]][1]
> var.r.null <- sigma(m.null)^2
> var.null <- var.g.null + var.r.null
>
> var.g.full <- VarCorr(model)[[1]][1]
> var.r.full <- sigma(model)^2
> var.full <- var.g.full + var.r.full
>
> form <- unlist(lapply(term, function(x) paste(".~. -", x, sep = " ")))
> var.red <- numeric(n)
> for (i in n:1){
> var.g.red <- VarCorr(update(model, as.formula(form[i])))[[1]][1]
> var.r.red <- sigma(update(model, as.formula(form[i])))^2
> var.red[i] <- var.g.red + var.r.red
> }
>
> out2 <- round(100 * (var.red - var.full)/var.null, 5)
> return(cbind(out, Partial_R2_Snijders = out2))
> }
>
>
>
> 2014-11-20 17:00 GMT+01:00 Joan Molibo <joanmolibo at gmail.com>:
>
>>
>> Good afternoon;
>>
>> First, I am not a statistician although I am in the way (I am a medical
>> doctor studying the grade in statistic, still in the first course). I would
>> like to compute de partial R-squared of the fixed effects of a model. I
>> have found a function from the LMERConvenienceFunctions package, but it
>> computes these from the lme4 anova extraction function, which gives a
>> sequential anova.
>>
>> I have created an ad hoc function to compute the R-squared for each term
>> conditionally to the other terms in the model (based on the pamer.fnc). For
>> other hand, I have done something similar based with the recommedations
>> given by Snijders in his book (2nd edition, pages 111-113) to compute de R2
>> in two levels models.
>>
>> I am not very sure of what I have done, but I think that the function
>> works so I would appreciate some light. For other hand, could I call the
>> calculated value as partial R-squared value of the fixed effects of a mixed
>> model?
>>
>> Thank you very much.
>>
>> As example:
>>
>> partialR2 <- function(model){
>> # Based on SS
>>
>> term <- attr(terms(model), "term.labels")
>> dv <- gsub(" ", "", gsub("(.*)~.*", "\\1", as.character(model at call
>> )[2]))
>> ss.tot <- sum((model at frame[, dv] - mean(model at frame[, dv]))^2)
>> n <- length(term)
>> ss.var <- numeric(n)
>> form <- unlist(lapply(term, function(x) paste(paste(".~. -", x, sep =
>> ""), x, sep = "+")))
>> for (i in 1:(n - 1)){
>> ss.var[i] <- as.data.frame(anova(update(model,
>> as.formula(form[i]))))[n, 2]
>> }
>> ss.var[n] <- as.data.frame(anova(model))[n, 2]
>> names(ss.var[n]) <- term[n]
>> out <- cbind(round(100 * ss.var/ss.tot, 5))
>> rownames(out) <- term
>> colnames(out) <- "Partial R2"
>>
>> #Snijder
>> form <- paste(paste(".~ 1 + (1 |", names(ngrps(model)), sep = ""), ")",
>> sep = "")
>> m.null <- update(model, as.formula(form))
>> var.g.null <- VarCorr(m.null)[[1]][1]
>> var.r.null <- sigma(m.null)^2
>> var.null <- var.g.null + var.r.null
>>
>> var.g.full <- VarCorr(model)[[1]][1]
>> var.r.full <- sigma(model)^2
>> var.full <- var.g.full + var.r.full
>>
>> form <- unlist(lapply(term, function(x) paste(".~. -", x, sep = " ")))
>> var.red <- numeric(n)
>> for (i in n:1){
>> var.g.red <- VarCorr(update(model, as.formula(form[i])))[[1]][1]
>> var.r.red <- sigma(update(model, as.formula(form[i])))^2
>> var.red[i] <- var.g.red + var.r.red
>> }
>>
>> out2 <- round(100 * (var.red - var.full)/var.null, 5)
>> return(cbind(out, Partial_R2_Snijders = out2))
>> }
>>
>>
>> ##################################################
>> ##################################################
>>
>>
>> library(LMERConvenienceFunctions)
>> library(foreign)
>> library(lme4)
>> dd <- read.dta("
>> http://www.ats.ucla.edu/stat/stata/examples/mlm_ma_snijders/mlbook1.dta")
>> str(dd)
>> m1 <- lmer(langpost ~ sex + ses + iq_perf + langpret + (1|schoolnr), data
>> = dd)
>> summary(m1)
>> anova(m1)
>> pamer.fnc(m1)
>> partialR2(m1)
>>
>>
>>
>
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list