[R-sig-ME] SE and CI for ICC
Martin Maechler
maechler at stat.math.ethz.ch
Sat Sep 13 16:32:17 CEST 2014
>>>>> Mohd Masood <drmasoodmohd at gmail.com>
>>>>> on Sat, 13 Sep 2014 00:20:34 +0800 writes:
> I am using random intercept logistic model (in lme4) to calculated
> Intraclass correlation coefficient (ICC). lme4 only provides point
> estimates and standard deviation (not standard errors) of variance
> estimates.
Hmm, this is not true:
> require(lme4)
> summary(fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
Min 1Q Median 3Q Max
-3.9536 -0.4634 0.0231 0.4634 5.1793
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 612.09 24.740
Days 35.07 5.922 0.07
Residual 654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77
Correlation of Fixed Effects:
(Intr)
Days -0.138
> pfm1 <- profile(fm1) # the main computation for the confint() below:
> confint(pfm1)
2.5 % 97.5 %
.sig01 14.3814761 37.715996
.sig02 -0.4815007 0.684986
.sig03 3.8011641 8.753383
.sigma 22.8982669 28.857997
(Intercept) 237.6806955 265.129515
Days 7.3586533 13.575919
> confint(pfm1, level = 0.99)
0.5 % 99.5 %
.sig01 11.697963 43.9249121
.sig02 -0.611183 0.8620229
.sig03 3.313161 10.1306220
.sigma 22.149064 30.0282535
(Intercept) 232.619539 270.1906680
Days 6.212281 14.7222899
>
does provide confidence intervals (CI) also for all variance
parameters, not just the fixed effects
and you should really also look at
require(lattice)
xyplot(pfm1)
which shows you confidence intervals to a couple of levels simultaneously,
and notably also visualizes how (un)reasonable a Gaussian
approximation to the sigma's would be.
Martin Maechler, ETH Zurich
> These point estimates can be used to calculated point estimates for ICC. The
> problem is how can I calculate standard error and confidence interval for
> ICC. I couldn't find any literature showing formula to calculate confidence
> interval around ICC. Or is it not possible to calculate SE and CI for ICC
> due to skewed sampling distribution (Please see PMCID: PMC3426610).
> Thanks
> Masood
> [[alternative HTML version deleted]]
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list