[R-sig-ME] anova() and the difference between (x | y) and (1 | y:x) in lme4

ONKELINX, Thierry Thierry.ONKELINX at inbo.be
Fri Jun 13 13:35:02 CEST 2014


Dear Hans,

I'm not sure if one can consider (A|B) and (1|B)  + (1|A:B) to be nested. (1|B)  + (A|B) and (1|B)  + (1|A:B) are nested. (1|A:B) is the same as (A|B) with constrains on the variance-covariance matrix.

Best regards,

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium
+ 32 2 525 02 51
+ 32 54 43 61 85
Thierry.Onkelinx op inbo.be
www.inbo.be

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey


-----Oorspronkelijk bericht-----
Van: r-sig-mixed-models-bounces op r-project.org [mailto:r-sig-mixed-models-bounces op r-project.org] Namens Hans Ekbrand
Verzonden: woensdag 11 juni 2014 23:17
Aan: r-sig-mixed-models op r-project.org
Onderwerp: Re: [R-sig-ME] anova() and the difference between (x | y) and (1 | y:x) in lme4

On Wed, Jun 11, 2014 at 10:38:38AM -0400, Ben Bolker wrote:
> On 14-06-11 10:21 AM, ONKELINX, Thierry wrote:
> > Dear Hans,
> >
> > I assume that var1 is a factor variable.
> >
> > The difference is in the distribution of the random effects.
> >
> > (1|var1:var2) : all random intercept come from the same univariate
> > normal distribution rnorm(mean = 0, sd = sigma)
> > (0 + var1|var2): the random intercepts come from a multivariate
> > normal distribution: rmvnorm(mean = 0, sigma = Sigma). Sigma is a
> > positive definite matrix
> >
> > (0 + var1|var2) is a bit easier to understand because the BLUP's
> > have the same interpretation of those of (1|var1:var2)
> >
> > The bottom-line is that (var1|var2) and (1|var1:var2) allow the same model fit but (var1|var2) makes less assumptions at the cost of estimation more parameters. (var1|var2) requires n * (n + 1) / 2 parameters, with n = number of levels of var1. (1|var1:var2) requires just 1 parameter.

[...]

>   (2) the 'unstructured' (var1|var2) and 'grouped/positive compound
> symmetry' models (1|var1:var2) are in principle nested (all
> off-diagonals equal to zero, all diagonals identical -> simpler
> model), so you should be able to use a likelihood ratio test/ANOVA to test.

Would that hold even if I include a random intercept term for var2 (=country) in the 'grouped/positive compound symmetry' model?

below.poverty.line ~ 1 + employment.type + (1 | country:employment.type) + (1 | country) + gender + age + age.2 + n.adults.minus.n.children + n.children + education + household.type

> anova(fit.hierarchical, fit.flat.plus.random.intercept)
Data: my.df
Models:
fit.flat.plus.random.intercept: below.poverty.line ~ 1 + employment.type + (1 | country:employment.type) +
fit.flat.plus.random.intercept:     (1 | country) + gender + age + age.2 + n.adults.minus.n.children +
fit.flat.plus.random.intercept:     n.children + education + household.type
fit.hierarchical: below.poverty.line ~ 1 + employment.type + (employment.type |
fit.hierarchical:     country) + gender + age + age.2 + n.adults.minus.n.children +
fit.hierarchical:     n.children + education + household.type
                               Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
fit.flat.plus.random.intercept 19 38808 38988 -19385    38770
fit.hierarchical               38 38804 39163 -19364    38728 42.161     19   0.001686 **

_______________________________________________
R-sig-mixed-models op r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
* * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document.
The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.



More information about the R-sig-mixed-models mailing list