[R-sig-ME] anova() and the difference between (x | y) and (1 | y:x) in lme4

Ben Bolker bbolker at gmail.com
Wed Jun 11 16:38:38 CEST 2014


On 14-06-11 10:21 AM, ONKELINX, Thierry wrote:
> Dear Hans,
> 
> I assume that var1 is a factor variable.
> 
> The difference is in the distribution of the random effects.
> 
> (1|var1:var2) : all random intercept come from the same univariate normal distribution rnorm(mean = 0, sd = sigma)
> (0 + var1|var2): the random intercepts come from a multivariate normal distribution: rmvnorm(mean = 0, sigma = Sigma). Sigma is a positive definite matrix
> 
> (0 + var1|var2) is a bit easier to understand because the BLUP's have the same interpretation of those of (1|var1:var2)
> 
> The bottom-line is that (var1|var2) and (1|var1:var2) allow the same model fit but (var1|var2) makes less assumptions at the cost of estimation more parameters. (var1|var2) requires n * (n + 1) / 2 parameters, with n = number of levels of var1. (1|var1:var2) requires just 1 parameter.
> 
> Best regards,
> 
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest
> team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
> Kliniekstraat 25
> 1070 Anderlecht
> Belgium
> + 32 2 525 02 51
> + 32 54 43 61 85
> Thierry.Onkelinx at inbo.be
> www.inbo.be

  Thanks Tierry.

  I would add:

  (1) for what it's worth, lme offers an intermediate model (compound
symmetry), which allows for homogeneous but _negative_ within-group
correlation ((1|var1:var2) only allows for non-negative within-group
correlation)
  (2) the 'unstructured' (var1|var2) and 'grouped/positive compound
symmetry' models (1|var1:var2) are in principle nested (all
off-diagonals equal to zero, all diagonals identical -> simpler model),
so you should be able to use a likelihood ratio test/ANOVA to test.
  (3) your max|grad| convergence warnings are probably false positives;
I would try scaling&centring your continuous predictors to see if that
makes the eigenvalue warnings go away.

  Ben Bolker


> 
> To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
> ~ Sir Ronald Aylmer Fisher
> 
> The plural of anecdote is not data.
> ~ Roger Brinner
> 
> The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
> ~ John Tukey
> 
> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org [mailto:r-sig-mixed-models-bounces at r-project.org] Namens Hans Ekbrand
> Verzonden: woensdag 11 juni 2014 15:58
> Aan: r-sig-mixed-models at r-project.org
> Onderwerp: [R-sig-ME] anova() and the difference between (x | y) and (1 | y:x) in lme4
> 
> Dear list,
> 
> I have a question about the difference between
> 
> y ~ (1 | var2:var1) vs y ~ (var1 | var2).
> 
> In reality my model is more complex:
> 
> y ~ 1 + var1 + (1 | var2:var1) + var3+ .... + var9
> 
> vs
> 
> y ~ 1 + var1 + (var1 | var2) + var3+ .... + var9
> 
> Following the advice kindly given by Reinhold Kliegl way back ago
> (https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q2/016545.html)
> I have used the following specification with glmer() in lme4 (version 1.1-7):
> 
> fit.flat <- glmer(below.poverty.line ~ 1 + employment.type + (1 | country:employment.type) + gender + age + age.2 + n.adults.minus.n.children + n.children + education + household.type, family = binomial("logit"), data = my.df)
> 
> and
> 
> fit.hierarchical <- glmer(below.poverty.line ~ 1 + employment.type + (employment.type | country) + gender + age + age.2 + n.adults.minus.n.children + n.children + education + household.type, family = binomial("logit"), data = my.df)
> 
> Info on the data:
> 
> str(my.df)
> 'data.frame':   93178 obs. of  10 variables:
>  $ below.poverty.line       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
>  $ employment.type          : Factor w/ 6 levels "Core labour force",..: 1 5 1 1 1 5 5 5 1 1 ...
>  $ country                  : Factor w/ 22 levels "austria","belgium",..: 1 1 1 1 1 1 1 1 1 1 ...
>  $ gender                   : Factor w/ 2 levels "female","male": 2 1 2 2 1 1 1 1 2 2 ...
>  $ age                      : num  22 22 32 56 40 54 42 18 49 20 ...
>  $ age.2                    : num  3.39e-02 3.39e-02 7.08e-03 2.43e-02 1.71e-05 ...
>  $ n.adults.minus.n.children: num  3 3 1 5 2 2 3 5 5 5 ...
>  $ n.children               : num  1 1 2 0 1 0 1 0 0 0 ...
>  $ education                : Factor w/ 4 levels "primary","lower secondary",..: 2 2 4 2 3 4 2 2 2 3 ...
>  $ household.type           : Factor w/ 4 levels "couple without children",..: 2 2 3 1 3 4 3 4 1 4 ...
> 
> If you want to replicate the analysis - or inspect the data - try this:
> 
> load(url("http://hansekbrand.se/code/my.df.RData"))
> 
> The total computation time for both models is about one hour on my computer.
> 
> My primary question is whether or not anova() is usable to choose between the two models?
> 
> Data: my.df
> Models:
> fit.flat: below.poverty.line ~ 1 + employment.type + (1 | country:employment.type) +
> fit.flat:     gender + age + age.2 + n.adults.minus.n.children + n.children +
> fit.flat:     education + household.type
> fit.hierarchical: below.poverty.line ~ 1 + employment.type + (employment.type |
> fit.hierarchical:     country) + gender + age + age.2 + n.adults.minus.n.children +
> fit.hierarchical:     n.children + education + household.type
>                  Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
> fit.flat         18 38852 39022 -19408    38816
> fit.hierarchical 38 38804 39163 -19364    38728 88.082     20  1.602e-10 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> My second question is whether or not I should care about the warnings I get (not entirely sure which one belongs to which model, but the first one should be against fit.hierarchcial).
> 
> Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
>   Model failed to converge with max|grad| = 0.00636715 (tol = 0.001, component 30) Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
>   Model is nearly unidentifiable: very large eigenvalue
>  - Rescale variables?
> Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
>   Model is nearly unidentifiable: very large eigenvalue
>  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
>  - Rescale variables?
> 
> summary(fit.flat)
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
>  Family: binomial  ( logit )
> Formula: below.poverty.line ~ 1 + employment.type + (1 | country:employment.type) +
>     gender + age + age.2 + n.adults.minus.n.children + n.children +      education + household.type
>    Data: my.df
> 
>      AIC      BIC   logLik deviance df.resid
>  38852.1  39022.1 -19408.1  38816.1    93160
> 
> Scaled residuals:
>     Min      1Q  Median      3Q     Max
> -1.5785 -0.2741 -0.1841 -0.1240 14.1696
> 
> Random effects:
>  Groups                  Name        Variance Std.Dev.
>  country:employment.type (Intercept) 0.301    0.5486
> Number of obs: 93178, groups:  country:employment.type, 132
> 
> Fixed effects:
>                                                      Estimate Std. Error z value Pr(>|z|)
> (Intercept)                                         -2.821530   0.164883 -17.112  < 2e-16 ***
> employment.typeCore self-employed                    1.779764   0.177173  10.045  < 2e-16 ***
> employment.typeInto core labour force                0.873362   0.183095   4.770 1.84e-06 ***
> employment.typeMarginalized peripheral labour force  1.791760   0.185840   9.641  < 2e-16 ***
> employment.typePeripheral labour force               1.036154   0.175026   5.920 3.22e-09 ***
> employment.typePeripheral self-employed              1.699013   0.180444   9.416  < 2e-16 ***
> gendermale                                           0.152666   0.029487   5.177 2.25e-07 ***
> age                                                 -0.008906   0.001537  -5.794 6.86e-09 ***
> age.2                                               -3.647558   1.044310  -3.493 0.000478 ***
> n.adults.minus.n.children                            0.034069   0.010769   3.164 0.001559 **
> n.children                                           0.258188   0.028628   9.019  < 2e-16 ***
> educationlower secondary                            -0.399377   0.051611  -7.738 1.01e-14 ***
> educationupper secondary                            -0.902910   0.049323 -18.306  < 2e-16 ***
> educationpost secondary                             -1.582793   0.056489 -28.019  < 2e-16 ***
> household.typecouple with children                  -0.120115   0.058652  -2.048 0.040568 *
> household.typesingle adult with children             0.514623   0.069323   7.424 1.14e-13 ***
> household.typesingle adult without children          0.195389   0.041295   4.732 2.23e-06 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> summary(fit.hierarchical)
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
>  Family: binomial  ( logit )
> Formula: below.poverty.line ~ 1 + employment.type + (employment.type |
>     country) + gender + age + age.2 + n.adults.minus.n.children +      n.children + education + household.type
>    Data: my.df
> 
>      AIC      BIC   logLik deviance df.resid
>  38804.0  39162.8 -19364.0  38728.0    93140
> 
> Scaled residuals:
>     Min      1Q  Median      3Q     Max
> -1.5710 -0.2728 -0.1835 -0.1243 14.1030
> 
> Random effects:
>  Groups  Name                                                Variance Std.Dev. Corr
>  country (Intercept)                                         0.2204   0.4695
>          employment.typeCore self-employed                   0.4457   0.6676   -0.20
>          employment.typeInto core labour force               0.3922   0.6263   -0.35  0.44
>          employment.typeMarginalized peripheral labour force 0.1228   0.3504   -0.63  0.57  0.39
>          employment.typePeripheral labour force              0.1090   0.3301   -0.38  0.24  0.70  0.66
>          employment.typePeripheral self-employed             0.3823   0.6183   -0.32  0.85  0.82  0.66  0.65
> Number of obs: 93178, groups:  country, 22
> 
> Fixed effects:
>                                                      Estimate Std. Error z value Pr(>|z|)
> (Intercept)                                         -2.817822   0.153843 -18.316  < 2e-16 ***
> employment.typeCore self-employed                    1.741686   0.156367  11.138  < 2e-16 ***
> employment.typeInto core labour force                0.847817   0.156475   5.418 6.02e-08 ***
> employment.typeMarginalized peripheral labour force  1.771534   0.110705  16.002  < 2e-16 ***
> employment.typePeripheral labour force               1.021857   0.090266  11.321  < 2e-16 ***
> employment.typePeripheral self-employed              1.636287   0.151647  10.790  < 2e-16 ***
> gendermale                                           0.153356   0.029485   5.201 1.98e-07 ***
> age                                                 -0.008938   0.001540  -5.805 6.44e-09 ***
> age.2                                               -3.629799   1.103239  -3.290  0.00100 **
> n.adults.minus.n.children                            0.035107   0.010791   3.253  0.00114 **
> n.children                                           0.257672   0.028595   9.011  < 2e-16 ***
> educationlower secondary                            -0.403009   0.051870  -7.770 7.87e-15 ***
> educationupper secondary                            -0.899745   0.049781 -18.074  < 2e-16 ***
> educationpost secondary                             -1.584911   0.056888 -27.860  < 2e-16 ***
> household.typecouple with children                  -0.117651   0.058688  -2.005  0.04500 *
> household.typesingle adult with children             0.512608   0.069332   7.393 1.43e-13 ***
> household.typesingle adult without children          0.197551   0.041314   4.782 1.74e-06 ***
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> * * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
> Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document.
> The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>



More information about the R-sig-mixed-models mailing list