[R-sig-ME] How to interpret verbose output
Stuart Luppescu
slu at ccsr.uchicago.edu
Thu May 22 00:15:02 CEST 2014
Hello, I'm trying to do a variance decomposition of teacher performance
ratings. Each teacher is observed four times and rated on 9 components.
The model looks like this:
lme8 <- lmer(rating ~
(1|tid.f) + (1|obsorder.f) + (1|comp.f) +
(1|tid.f:comp.f) + (1|obsorder.f:comp.f) + (1|
tid.f:obsorder.f) ,
data=ratings, REML=FALSE, verbose=2)
where tid.f is the teacher identifier, comp.f the component identifier,
and obsorder.f the observation number.
This works fine for the whole dataset, but I want to do it separately by
decile based on the average rating for each teacher, so I added this: ,
subset=ratings$bins==quantile
where the bins are {1, ..., 10} indicating the decile, and quantile is a
loop index used like this: for(quantile in 1:10) {}
It works fine for the lowest decile, but fails for every decile after
that. I get 0.00 for the tid.f variance component, which is the one I'm
really interested in. I have no idea why. I checked the distribution of
average ratings by decile and it all looks unremarkable. I think there
may be a clue in the iteration details as shown by the verbose output
but I don't know how to interpret it. Here it is for decile 1:
npt = 8 , n = 6
rhobeg = 0.2 , rhoend = 2e-07
0.020: 16: 18359.8;0.454554 0.735854 0.376302 0.705437 0.787591
0.802885
0.0020: 32: 18346.2;0.454004 0.699893 0.407403 0.574987 0.702683
0.880645
0.00020: 77: 18263.7;0.432231 0.697895 0.398860 0.0461275
0.326475 1.55039
2.0e-05: 292: 18252.6;0.432051 0.700841 0.394275 0.0472994
0.315551 0.130071
2.0e-06: 339: 18252.6;0.432029 0.700839 0.394515 0.0472285
0.314849 0.129962
2.0e-07: 364: 18252.6;0.432028 0.700822 0.394548 0.0472181
0.314777 0.129904
At return
395: 18252.578: 0.432030 0.700822 0.394554 0.0472204 0.314755
0.129913
> print(summary(lme8))
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: rating ~ (1 | tid.f) + (1 | obsorder.f) + (1 | comp.f) + (1 |
tid.f:comp.f) + (1 | obsorder.f:comp.f) + (1 | tid.f:obsorder.f)
Data: ratings
Subset: ratings$bins == quantile
AIC BIC logLik deviance df.resid
18268.6 18328.1 -9126.3 18252.6 12622
Scaled residuals:
Min 1Q Median 3Q Max
-3.2200 -0.5592 -0.0306 0.5711 4.4942
Random effects:
Groups Name Variance Std.Dev.
tid.f:comp.f (Intercept) 0.033067 0.18184
tid.f:obsorder.f (Intercept) 0.087013 0.29498
tid.f (Intercept) 0.027579 0.16607
obsorder.f:comp.f (Intercept) 0.000395 0.01988
comp.f (Intercept) 0.017551 0.13248
obsorder.f (Intercept) 0.002990 0.05468
Residual 0.177161 0.42090
Number of obs: 12630, groups: tid.f:comp.f, 3159; tid.f:obsorder.f,
1404; tid.f, 351; obsorder.f:comp.f, 45; comp.f, 9; obsorder.f, 5
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.01657 0.05355 37.65
And here for decile 5:
npt = 8 , n = 6
rhobeg = 0.2 , rhoend = 2e-07
0.020: 18: 15847.4;0.261469 0.514852 0.178718 0.0962381
0.152470 0.160530
0.0020: 35: 15749.5;0.356245 0.532056 0.00000 0.0961818
0.219586 0.166497
0.00020: 90: 15742.1;0.349036 0.516678 0.00000 0.0755764
0.330633 0.248861
2.0e-05: 107: 15742.1;0.348612 0.515454 0.00000 0.0766747
0.332641 0.251693
2.0e-06: 250: 15742.1;0.348335 0.515211 0.00000 0.0765898
0.330456 0.260112
2.0e-07: 273: 15742.1;0.348339 0.515207 0.00000 0.0765856
0.330510 0.260162
At return
281: 15742.076: 0.348339 0.515207 1.97296e-07 0.0765858 0.330510
0.260162
> print(summary(lme8))
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: rating ~ (1 | tid.f) + (1 | obsorder.f) + (1 | comp.f) + (1 |
tid.f:comp.f) + (1 | obsorder.f:comp.f) + (1 | tid.f:obsorder.f)
Data: ratings
Subset: ratings$bins == quantile
AIC BIC logLik deviance df.resid
15758.1 15817.7 -7871.0 15742.1 12772
Scaled residuals:
Min 1Q Median 3Q Max
-3.6535 -0.3833 0.1362 0.5225 3.4610
Random effects:
Groups Name Variance Std.Dev.
tid.f:comp.f (Intercept) 0.0192757 0.13884
tid.f:obsorder.f (Intercept) 0.0421666 0.20535
tid.f (Intercept) 0.0000000 0.00000
obsorder.f:comp.f (Intercept) 0.0009318 0.03052
comp.f (Intercept) 0.0173531 0.13173
obsorder.f (Intercept) 0.0107521 0.10369
Residual 0.1588568 0.39857
Number of obs: 12780, groups: tid.f:comp.f, 3195; tid.f:obsorder.f,
1420; tid.f, 355; obsorder.f:comp.f, 45; comp.f, 9; obsorder.f, 5
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.85126 0.06774 42.09
For decile 5, I notice that the column fourth from the right goes to 0
after the first line. Does that mean something? Any ideas about why this
is failing?
Thanks in advance.
--
Stuart Luppescu -=-=- slu <AT> ccsr <DOT> uchicago <DOT> edu
CCSR at U of C ,.;-*^*-;., ccsr.uchicago.edu
(^_^)/ 才文と智奈美の父
[Crash programs] fail because they are based on the theory that,
with nine women pregnant, you can get a baby a month.
-- Wernher von Braun
More information about the R-sig-mixed-models
mailing list