[R-sig-ME] Model comparison with anova and AIC: p=0 and different AIC-values
Stefan Th. Gries
stgries at gmail.com
Sat Nov 16 18:52:37 CET 2013
Hi
BB> I'm not sure about that, it looks like it *might* be a glitch in
the display. Do the results of anova(m.01b.reml, m.01a.reml) look
more sensible?
The results of the two anova functions are the same (and come with warnings):
> anova(m.01a.reml, m.01b.reml) # one order
Data:
Models:
m.01b.reml: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED + SAMPLE | NAME)
m.01a.reml: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED * SAMPLE | NAME)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
m.01b.reml 13 -144.74 -115.139 85.368 -170.74
m.01a.reml 17 -21.20 17.503 27.600 -55.20 0 4 1
Warning message:
In optwrap(optimizer, devfun, x at theta, lower = x at lower) :
convergence code 1 from bobyqa: bobyqa -- maximum number of function
evaluations exceeded
> anova(m.01b.reml, m.01a.reml) # other order
Data:
Models:
m.01b.reml: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED + SAMPLE | NAME)
m.01a.reml: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED * SAMPLE | NAME)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
m.01b.reml 13 -144.74 -115.139 85.368 -170.74
m.01a.reml 17 -21.20 17.503 27.600 -55.20 0 4 1
Warning message:
In optwrap(optimizer, devfun, x at theta, lower = x at lower) :
convergence code 1 from bobyqa: bobyqa -- maximum number of function
evaluations exceeded
BB> As pointed out by several users (here, here, and here, for
example), the AICs computed for lmer models in summary and anova are
different; summary uses the REML specification as specified when
fitting the model, while anova always uses REML=FALSE
Ah ok, I did not know that. I do not get any AIC-values though from
the summary output:
> summary(m.01a.reml) # one model
Linear mixed model fit by REML ['lmerMod']
Formula: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED * SAMPLE | NAME)
REML criterion at convergence: -13.038
Random effects:
Groups Name Variance Std.Dev. Corr
NAME (Intercept) 0.011097 0.10534
USEDyes 0.026935 0.16412 0.56
SAMPLE 0.000392 0.01980 0.80 0.17
USEDyes:SAMPLE 0.005344 0.07310 -0.80 -0.17 -1.00
Residual 0.003081 0.05551
Number of obs: 72, groups: NAME, 12
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.11711 1.54844 0.076
USEDyes 0.33570 5.61965 0.060
poly(SAMPLE, 2)1 0.41849 8.24332 0.051
poly(SAMPLE, 2)2 -0.03079 0.07850 -0.392
USEDyes:poly(SAMPLE, 2)1 0.55875 30.43556 0.018
USEDyes:poly(SAMPLE, 2)2 -0.25532 0.11102 -2.300
Correlation of Fixed Effects:
(Intr) USEDys p(SAMPLE,2)1 p(SAMPLE,2)2 USED:(SAMPLE,2)1
USEDyes -1.000
p(SAMPLE,2)1 1.000 -1.000
p(SAMPLE,2)2 0.000 0.000 0.000
USED:(SAMPLE,2)1 -1.000 1.000 -1.000 0.000
USED:(SAMPLE,2)2 0.000 0.000 0.000 -0.707 0.000
> summary(m.01b.reml) # other model
Linear mixed model fit by REML ['lmerMod']
Formula: OVERLAParcsine ~ USED * poly(SAMPLE, 2) + (USED + SAMPLE | NAME)
REML criterion at convergence: -146.4052
Random effects:
Groups Name Variance Std.Dev. Corr
NAME (Intercept) 1.500e-28 1.225e-14
USEDyes 8.008e-02 2.830e-01 0.42
SAMPLE 3.362e-09 5.798e-05 0.42 1.00
Residual 2.777e-03 5.270e-02
Number of obs: 72, groups: NAME, 12
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.117109 0.009852 11.887
USEDyes 0.335704 0.082629 4.063
poly(SAMPLE, 2)1 0.418488 0.078339 5.342
poly(SAMPLE, 2)2 -0.030790 0.074527 -0.413
USEDyes:poly(SAMPLE, 2)1 0.558745 0.105396 5.301
USEDyes:poly(SAMPLE, 2)2 -0.255317 0.105396 -2.422
Correlation of Fixed Effects:
(Intr) USEDys p(SAMPLE,2)1 p(SAMPLE,2)2 USED:(SAMPLE,2)1
USEDyes 0.353
p(SAMPLE,2)1 0.140 0.305
p(SAMPLE,2)2 0.000 0.000 0.000
USED:(SAMPLE,2)1 0.000 0.000 -0.673 0.000
USED:(SAMPLE,2)2 0.000 0.000 0.000 -0.707 0.000
BB> (This behavior is slightly overzealous since users might
conceivably be using anova to compare models with different random
effects [although this also subject to boundary effects as described
elsewhere in this document …])
Yes, that's what I was trying to do, following some advice in the
literature (I think the Zuur et al. books)
BB> Note that the AIC differences are almost identical (140)
True, the anova one is 123, the separate AIC ones are 140.
BB> Well, anova() gave you a likelihood ratio test (based on a ML
refitting, which is not necessarily what you want: see
https://github.com/lme4/lme4/issues/141 ).
Ok, I get that now, thanks.
BB> I would say that the bottom line here is that since the more
complex model m.01b.reml is about 60 log-likelihood units (or "REML
criterion units") better, it doesn't really matter what test you do --
the more complex model is overwhelmingly better.
Ok, just to clarify: m.01b.reml is the more complex one:
m.01a.reml <- lmer(OVERLAParcsine ~ USED*poly(SAMPLE, 2) +
(USED*SAMPLE|NAME), REML=TRUE)
m.01b.reml <- lmer(OVERLAParcsine ~ USED*poly(SAMPLE, 2) +
(USED+SAMPLE|NAME), REML=TRUE)
but so you're saying I should go with m.01a.reml because ... do you
get to the 60 LL units because of
- the REML criterion at convergence: (-13.038 for m.01a.reml and
-146.4052 for m.01b.reml), or
- because of the logLik diff in the anova output?
Thanks so much,
STG
--
Stefan Th. Gries
-----------------------------------------------
University of California, Santa Barbara
http://www.linguistics.ucsb.edu/faculty/stgries
More information about the R-sig-mixed-models
mailing list