[R-sig-ME] MCMCglmm predictions with fixed effects Splines

Jarrod Hadfield j.hadfield at ed.ac.uk
Tue Mar 26 10:38:24 CET 2013


Hi,

Check out the examples in ?spl: you haven't fitted a penalised spline.  
You probably want something like:

glm.MC.2 <- MCMCglmm(mortality.under.2 ~ maternal_age_c +  
I(maternal_age_c^2)  + birth_year + residence + maternal_educ +
sex + wealth, nitt=20000, thin=10, burnin=1000,random=  
~idv(spl(birdth_year))+CASEID,  
prior=prior.2,data=rwanda2,family='categorical', pr=TRUE)

Note that I have saved the random effects (pr=TRUE) because the first  
k random effects are the spline coefficients. You will need to  
associate these with the relevant columns of Z (rather than X) to get  
predictions. Remember to include the fixed birth_year effect too.

Cheers,

Jarrod


Quoting "Antonio P. Ramos" <ramos.grad.student at gmail.com> on Mon, 25  
Mar 2013 19:57:51 -0700:

> I think I get what is going on a little better now. Does it make sense?
>
> # getting the predictions
> # where the nots are?
> k <- 10
> x <- quantile(rwanda2$birth_year, 1:k/(k + 1), na.rm = T)
> y <- unique(rwanda2$birth_year)
>
> # creating new data for the poor
> pred.data <- data.frame(maternal_age_c=rep(0,28),wealth=rep("Lowest
> quintile",28),
>                         sex=rep("Female",28),residence=rep("Rural",28),
>                         "spl(birth_year)1"=ifelse(y<1976,1,0),
>                         "spl(birth_year)2"=ifelse(y>1975&y<1979,1,0),
>                         "spl(birth_year)3"=ifelse(y>1978&y<1981,1,0),
>                         "spl(birth_year)4"=ifelse(y>1980&y<1983,1,0),
>                         "spl(birth_year)5"=ifelse(y>1982&y<1985,1,0),
>                         "spl(birth_year)6"=ifelse(y>=1984&y<1988,1,0),
>                         "spl(birth_year)7"=ifelse(y>=1987&y<=1990,1,0),
>                         "spl(birth_year)8"=ifelse(y>1989&y<1993,1,0),
>                         "spl(birth_year)9"=ifelse(y>1993&y<1996,1,0),
>                         "spl(birth_year)10"=ifelse(y>1995,1,0),
>                         birth_order=rep(1,28),
>                         maternal_educ=rep("No education",28))
>
> pred.data$wealth <- factor(pred.data$wealth,
>                            levels=c("Lowest quintile", "Second
> quintile","Middle quintile","Fourth quintile","Highest quintile"))
> pred.data$sex <- factor(pred.data$sex, levels=c("Male","Female"))
> pred.data$residence <- factor(pred.data$residence,levels=c("Rural","Urban"))
> pred.data$maternal_educ <- factor(pred.data$maternal_educ,
>                                   levels=c("No education", "Primary",
> "Secondary","Higher"))
>
>
> # design matrix
> X <- model.matrix(~ maternal_age_c + I(maternal_age_c^2) + residence +
>                      + maternal_educ +
>                     birth_order +  wealth +
>                     spl.birth_year.1  +
>                     spl.birth_year.2  +
>                     spl.birth_year.3  +
>                     spl.birth_year.4  +
>                     spl.birth_year.5  +
>                     spl.birth_year.6  +
>                     spl.birth_year.7  +
>                     spl.birth_year.8  +
>                     spl.birth_year.9  +
>                     spl.birth_year.10, data=pred.data)
>
>
> V <- rowSums(glm.MC.2$VCV) # marginalizing over random effects
> beta <- glm.MC.2$Sol # fixed effects
> c2 <- (16*sqrt(3)/(15*pi))^2 # alterative parametrization for the logistic
> distribution
> pred<- t(plogis(t(beta%*%t(X)/sqrt(1+c2*V))))
> pred <- as.data.frame(pred)
> colnames(pred) <- 1970:1997 # predictions for the poor for every year
> colSums(pred)
> pred.poor <- pred
>
>
>
> On Mon, Mar 25, 2013 at 5:14 PM, Antonio P. Ramos <
> ramos.grad.student at gmail.com> wrote:
>
>> maybe the model's summary would also help:
>>
>> > summary(glm.MC.2)
>>
>>  Iterations = 1001:19991
>>  Thinning interval  = 10
>>  Sample size  = 1900
>>
>>  DIC: 23202.78
>>
>>  G-structure:  ~CASEID
>>
>>        post.mean l-95% CI u-95% CI eff.samp
>> CASEID     1.008   0.8508    1.139    73.88
>>
>>  R-structure:  ~units
>>
>>       post.mean l-95% CI u-95% CI eff.samp
>> units         1        1        1        0
>>
>>  Location effects: mortality.under.2 ~ maternal_age_c +
>> I(maternal_age_c^2) + spl(birth_year) + residence + maternal_educ + sex +
>> wealth
>>
>>                            post.mean   l-95% CI   u-95% CI eff.samp
>> pMCMC
>> (Intercept)               -2.2844882 -4.0378822 -0.5243228    270.8
>> 0.00947 **
>> maternal_age_c            -0.0278874 -0.0396679 -0.0169772    409.5 <
>> 5e-04 ***
>> I(maternal_age_c^2)        0.0067512  0.0040534  0.0096366    369.2 <
>> 5e-04 ***
>> spl(birth_year)1          -0.0069841 -0.0172375  0.0024631    387.8
>> 0.15789
>> spl(birth_year)2           0.0257588  0.0003497  0.0511228    425.9
>> 0.05474 .
>> spl(birth_year)3          -0.0251424 -0.0871379  0.0381827    376.8
>> 0.41368
>> spl(birth_year)4          -0.0451816 -0.1068456  0.0188489    315.1
>> 0.17895
>> spl(birth_year)5          -0.0506369 -0.1256510  0.0256118    325.8
>> 0.20737
>> spl(birth_year)6           0.0571108 -0.0450529  0.1564138    229.7
>> 0.25368
>> spl(birth_year)7          -0.0993668 -0.1830175 -0.0135886    275.6
>> 0.01474 *
>> spl(birth_year)8          -0.0812237 -0.1417047 -0.0322527    273.6
>> 0.00316 **
>> spl(birth_year)9           0.0626604  0.0448635  0.0797381    300.8 <
>> 5e-04 ***
>> spl(birth_year)10         -0.0148629 -0.0234434 -0.0054245    387.5
>> 0.00105 **
>> residenceUrban            -0.2141484 -0.3716601 -0.0511390    280.1
>> 0.00947 **
>> maternal_educNo education  1.0334332  0.1228220  2.0524150    207.8
>> 0.03263 *
>> maternal_educPrimary       0.7954471 -0.1554284  1.7616937    206.3
>> 0.10316
>> maternal_educSecondary    -0.0083354 -0.9622503  1.0182426    195.0
>> 0.98000
>> sexMale                    0.1893753  0.1072094  0.2710264    275.2 <
>> 5e-04 ***
>> wealthSecond quintile      0.1773074  0.0444755  0.3283123    398.4
>> 0.01368 *
>> wealthMiddle quintile     -0.0667648 -0.2060366  0.0676636    376.9
>> 0.34316
>> wealthFourth quintile      0.0485797 -0.0913787  0.1942995    416.2
>> 0.47579
>> wealthHighest quintile    -0.1339028 -0.3017483  0.0077947    338.2
>> 0.08000 .
>> ---
>> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>>
>>
>>
>>
>>
>> On Mon, Mar 25, 2013 at 5:12 PM, Antonio P. Ramos <
>> ramos.grad.student at gmail.com> wrote:
>>
>>> Hi all,
>>>
>>> I am trying to get some predictions from a MCMCglmm model but it is not
>>> working. I guess I don't really following what the model is doing with tje
>>> spl() command. Here is an example of the issue.
>>>
>>> Thanks a bunch
>>>
>>>
>>>
>>> # inve.wishart(V=1,nu=4) is equivalent to inv-gamma(shape=2,scale=2) for
>>> mothers random effects
>>> prior.2 <- list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,nu =
>>> 4)))
>>> glm.MC.2 <- MCMCglmm(mortality.under.2 ~ maternal_age_c +
>>> I(maternal_age_c^2)  +
>>>                        spl(birth_year) + residence + maternal_educ +
>>>                        sex + wealth,
>>>                      nitt=20000, thin=10, burnin=1000,
>>>                      random= ~CASEID, prior=prior.2,data=rwanda2,
>>> family='categorical')
>>>
>>>
>>> > # creating new data for the poor
>>> > pred.data <- data.frame(maternal_age_c=rep(18,25),wealth=rep("Lowest
>>> quintile",25),
>>> +                         sex=rep("Female",25),residence=rep("Rural",25),
>>> +                         "spl(birth_year)1"=1971:1995,
>>> +                         "spl(birth_year)2"=1971:1995,
>>> +                         "spl(birth_year)3"=1971:1995,
>>> +                         "spl(birth_year)4"=1971:1995,
>>> +                         "spl(birth_year)5"=1971:1995,
>>> +                         "spl(birth_year)6"=1971:1995,
>>> +                         "spl(birth_year)7"=1971:1995,
>>> +                         "spl(birth_year)8"=1971:1995,
>>> +                         "spl(birth_year)9"=1971:1995,
>>> +                         "spl(birth_year)10"=1971:1995,
>>> +                         birth_order=rep(1,25),
>>> +                         maternal_educ=rep("No education",25))
>>> >
>>> > pred.data$wealth <- factor(pred.data$wealth,
>>> +                            levels=c("Lowest quintile", "Second
>>> quintile","Middle quintile","Fourth quintile","Highest quintile"))
>>> > pred.data$sex <- factor(pred.data$sex, levels=c("Male","Female"))
>>> > pred.data$residence <-
>>> factor(pred.data$residence,levels=c("Rural","Urban"))
>>> > # pred.data$birth_year <- factor(pred.data$birth_year, levels=1970:1997)
>>> > pred.data$maternal_educ <- factor(pred.data$maternal_educ,
>>> +                                   levels=c("No education", "Primary",
>>> "Secondary","Higher"))
>>> >
>>> >
>>> > # design matrix
>>> > X <- model.matrix(~ maternal_age_c + I(maternal_age_c^2) + residence +
>>> +                       + maternal_educ +
>>> +                       birth_order +  wealth +
>>> +                       spl.birth_year.1  +
>>> +                       spl.birth_year.2  +
>>> +                       spl.birth_year.3  +
>>> +                       spl.birth_year.4  +
>>> +                       spl.birth_year.5  +
>>> +                       spl.birth_year.6  +
>>> +                       spl.birth_year.7  +
>>> +                       spl.birth_year.8  +
>>> +                       spl.birth_year.9  +
>>> +                       spl.birth_year.10, data=pred.data)
>>> >
>>> >
>>> > V <- rowSums(glm.MC.2$VCV) # marginalizing over random effects
>>> > beta <- glm.MC.2$Sol # fixed effects
>>> > c2 <- (16*sqrt(3)/(15*pi))^2 # alterative parametrization for the
>>> logistic distribution
>>> > pred<- t(plogis(t(beta%*%t(X)/sqrt(1+c2*V))))
>>> > pred <- as.data.frame(pred)
>>> > colnames(pred) <- 1971:1995 # predictions for the poor for every year
>>> > colSums(pred)
>>>     1971     1972     1973     1974     1975     1976     1977     1978
>>>   1979     1980     1981     1982     1983
>>> 1677.094 1677.093 1677.093 1677.093 1677.093 1677.093 1677.093 1677.093
>>> 1677.093 1677.093 1677.093 1677.093 1677.093
>>>     1984     1985     1986     1987     1988     1989     1990     1991
>>>   1992     1993     1994     1995
>>> 1677.092 1677.092 1677.092 1677.092 1677.092 1677.092 1677.092 1677.092
>>> 1677.092 1677.092 1677.092 1677.092
>>> >
>>>
>>
>>
>
> 	[[alternative HTML version deleted]]
>
>



-- 
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.



More information about the R-sig-mixed-models mailing list