[R-sig-ME] Questions about MCMCglmm and marker data
Jarrod Hadfield
j.hadfield at ed.ac.uk
Mon Aug 27 19:26:25 CEST 2012
Hi,
It is the effects that are to be considered normal, not the way the
genotypes are coded.
It is not possible to fit this model in the current version of
MCMCglmm, but it will be available in the next. I hope to submit this
version to CRAN in the next couple of weeks.
Cheers,
Jarrod
Quoting Emmanuel Curis <curis at pharmacie.univ-paris5.fr> on Thu, 23 Aug
2012 12:10:46 +0200:
> Hello,
>
> I'm not familiar with this kind of genomic problems, but if the
> columns are the number of a given SNP for a given individual and can
> be only 0, 1 and 2, is this really possible to consider they follow a
> normal distribution?
>
> On Thu, Aug 23, 2012 at 11:54:49AM +0200, Marie Denis wrote:
> « Hi,
> «
> « I use the MCMCglmm function in the genomic selection context in the
> « univariate case. In fact I have for each trait one marker matrix
> « constituted of 0,1 and 2. The rows are the individuals and the columns
> « the SNPs. In a first time, we consider that each SNP follow a normal
> « distribution with the *same *variance. So I use the following model:
> «
> « prior.1.1 <- list(G=list(G1=list(V=diag(x = as.numeric(scale), nrow=1,
> « ncol=1),nu=ddl),
> « R=list(V=matrix(scale),nu=ddl))
> «
> « mcmc.fit.1.1 <- MCMCglmm(P~ 1,random=~idv(SNP),prior=prior.1.1,
> « data=data1.1,
> « nitt=5000, burnin=1000,verbose=FALSE,
> « thin=10,pr=TRUE)
> «
> « So, I obtained a common variance associated to my SNPs.
> «
> «
> « The second step is a bivariate analysis. I would like to obtain a
> « (co)variance matrix 2*2 associated to the trait1 and trait 2 and the
> « correlation between both. (one variance for the SNPs for the trait 1 and
> « one for the trait 2). But I don't know how i can do. The following model
> « give me only one variance for all SNPs and both traits.
> «
> « prior.3<- list(G=list(G1=list(V=diag(x = as.numeric(scale), nrow=1,
> « ncol=1),n=1)),
> « R=list(V=diag(x=as.numeric(0.1),nrow=2,ncol=2),n=2))
> «
> « mcmc.fit.3 <- MCMCglmm(cbind(P1,P2)~ trait-1,random=~idv(trait:SNP),
> « rcov=~idh(trait):units,
> « prior=prior.3,
> « data=data1.3,family=c("gaussian","gaussian"),
> « nitt=2000, burnin=500,verbose=FALSE,
> « thin=10,pr=TRUE)
> «
> «
> «
> « thanks for your help,
> «
> «
> «
> «
> « [[alternative HTML version deleted]]
> «
> « _______________________________________________
> « R-sig-mixed-models at r-project.org mailing list
> « https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
> --
> Emmanuel CURIS
> emmanuel.curis at univ-paris5.fr
>
> Page WWW: http://emmanuel.curis.online.fr/index.html
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
>
--
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.
More information about the R-sig-mixed-models
mailing list