[R-sig-ME] same within group std. error
peter dalgaard
pdalgd at gmail.com
Sun Aug 5 16:37:52 CEST 2012
On Aug 5, 2012, at 12:39 , Jesus wrote:
> Dear all,
> I have a question regarding mixed effect models and I have not been
> successful in finding the answer in the sites.
>
> I have my response variable "a" and the explanatory variables "distance",
> "numberAni" and "factor(algorithms)---with seven different algorithms, I
> also have my random variable "species" (with 5 different species). One of
> the algorithms is set as the intercept in the model.
>
> I run my model:
>
> model_1<-(lme(a)~ numberAni*factor(algorithm)+distance*factor(algorithm),
> random=~1|species,data=datamodel)
>
> An my summary table is as follows. My question is* why* do I get the *same
> Std. Error* for all the algorithms in the first part of the table and then
> other same std. error for the first interactions and then the new one for
> the second interactions? why are the within groups std. errors the same?
Your Subject: suggests that you might not have understood that the column labeled Std.Error is the accuracy of the estimates in the preceding column. This is a function of the estimated variance parameters and of the design -- no. of replications, etc. In a balanced design, which is probably what you have, the factor levels enter interchangeably, so the Std.Error for each level is the same function of the variances.
>
>
> Value *Std.Error* DF t-value p-value
> (Intercept) 1.0676374 0.28408892 4677 3.758110 0.0002
> NumberAni -0.0001166 0.00022606 13 -0.515724 0.6147
> factor(algorithm)A1 -2.8588307 0.14268775 4677 -20.035572 0.0000
> factor(algorithm)A2 -0.3869196 0.14268775 4677 -2.711653 0.0067
> factor(algorithm)A3 -0.6668651 0.14268775 4677 -4.673597 0.0000
> factor(algorithm)A4 -0.6600452 0.14268775 4677 -4.625802 0.0000
> factor(algorithm)A5 -0.3995352 0.14268775 4677 -2.800066 0.0051
> factor(algorithm)A6 -0.8642987 0.14268775 4677 -6.057273 0.0000
> distance -0.0000014 0.00000204 13 -0.685703 0.5049
>
> NumberAni:factor(algorithm)A1 0.0007324 0.00010871 4677 6.737032 0.0000
>
> NumberAni:factor(algorithm)A2 0.0003483 0.00010871 4677 3.203698 0.0014
>
> NumberAni:factor(algorithm)A3 0.0004839 0.00010871 4677 4.451614 0.0000
>
> NumberAni:factor(algorithm)A4 0.0004649 0.00010871 4677 4.277108 0.0000
>
> NumberAni:factor(algorithm)A5 -0.0000330 0.00010871 4677 -0.303855 0.7613
>
> NumberAni:factor(algorithm)A6 0.0004812 0.00010871 4677 4.426913 0.0000
>
> factor(algorithm)A1:distance 0.0000085 0.00000099 4677 8.577618 0.0000
> factor(algorithm)A2:distance 0.0000023 0.00000099 4677 2.309649 0.0210
> factor(algorithm)A3:distance 0.0000024 0.00000099 4677 2.468800 0.0136
> factor(algorithm)A4:distance 0.0000030 0.00000099 4677 3.008320 0.0026
> factor(algorithm)A5:distance -0.0000001 0.00000099 4677 -0.064863 0.9483
> factor(algorithm)A6:distance 0.0000033 0.00000099 4677 3.309633 0.0009
>
>
>
> If someone could explain it to me it would be great. I am sorry if this is
> a question already answered before.
>
> Regards,
>
> Jag
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
--
Peter Dalgaard, Professor,
Center for Statistics, Copenhagen Business School
Solbjerg Plads 3, 2000 Frederiksberg, Denmark
Phone: (+45)38153501
Email: pd.mes at cbs.dk Priv: PDalgd at gmail.com
More information about the R-sig-mixed-models
mailing list