[R-sig-ME] Covariance Matrix of fixed effects in lmer()
Ben Bolker
bbolker at gmail.com
Thu Jul 19 19:52:52 CEST 2012
Matthias Suter <matthias.suter at ...> writes:
>
> Is there a straight forward way, to get the scaled covariance matrix from a
> lmer()?
>
> E.g.
> lmerout <- lmer(y ~ x1 + x2 + x3 + (1 | Groupingfactor), data)
>
> summary(lmerout) gives the "Correlation of Fixed Effects"; I would like to
> have direct access to the covariance matrix.
>
> As analogy in lm():
>
> lmout <- lm(y ~ x1 + x2 + x3, data)
>
> Here, the scaled covariance matrix is:
>
> summary(lmout)$sigma^2 * summary(lmout)$cov.uns
>
> Thanks for any helpful answer,
> Matthias
>
>
It sounds like you want vcov() ... ? (vcov() works for
lm() results, and many other model types, too ...
methods(class="mer")
showMethods(class="mer") ## S4 methods
## or if using development lme4 from r-forge:
methods(class="merMod")
e.g.
(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
vcov(fm1)
2 x 2 Matrix of class "dpoMatrix"
(Intercept) Days
(Intercept) 46.574978 -1.451084
Days -1.451084 2.389469
cheers
Ben Bolker
More information about the R-sig-mixed-models
mailing list