[R-sig-ME] Calculating fixed effect contrasts with log-transformed data
Gus Jespersen
jesper at u.washington.edu
Fri Jul 13 20:32:49 CEST 2012
Greetings,
I doubt this is a particularly interesting question for you mixed
model gurus, but here goes. As you can see in the output below, I
have a model with twelve fixed effect parameters. I am interested in
each of the "Treatment" vs. "Control" comparisons for each "site"(in
each fixed effect parameter name, these are specified by the text
immediately following "sitett"). To produce a 95% CI for such a
comparison I was advised to take two steps:
(1) Subtract the Control parameter estimate from the Treatment
parameter estimate for each site.
(2) Compute the SE for this comparison via: sqrt( var(treatment) +
var(control) - 2*cov(treatmentt,control)). To get these values I am
using the vcov matrix for the model.
When I move to log10-transformed data, I am thinking I should
backtransform the fixed effects and SE's before moving ahead with the
Control-Treatment comparisons. However, the calculations become more
problematic as ( var(treatment) + var(control) -
2*cov(treatmentt,control)) is consistently negative. I am uncertain
on how to proceed here. Any advice would be much appreciated.
Thank you,
Gus
Data: data.file.final
Models:
Mod.NO3.1.2: NO3Nyearone ~ 1 + (1 | pr)
Mod.NO3.1.1: NO3Nyearone ~ 1 + sitett + (1 | pr)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
Mod.NO3.1.2 3 1163.5 1172.2 -578.72
Mod.NO3.1.1 14 1155.8 1196.7 -563.90 29.637 11 0.001806 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Linear mixed model fit by REML
Formula: NO3Nyearone ~ 1 + sitett + (1 | pr)
Data: data.file.final
AIC BIC logLik deviance REMLdev
1098 1139 -534.8 1128 1070
Random effects:
Groups Name Variance Std.Dev.
pr (Intercept) 33.348 5.7747
Residual 210.115 14.4954
Number of obs: 137, groups: pr, 72
Fixed effects:
Estimate Std. Error t value
(Intercept) 20.118 4.701 4.280
sitettLepAddition Treatment 3.032 6.069 0.500
sitettMossAddition Control 5.677 6.809 0.834
sitettMossAddition Treatment 9.418 6.648 1.417
sitettMossRemoval Control -9.951 6.510 -1.529
sitettMossRemoval Treatment -9.601 6.510 -1.475
sitettSaddle Control -10.985 6.510 -1.687
sitettSaddle Treatment -12.269 6.648 -1.846
sitettToeAdditions Control 0.932 6.510 0.143
sitettToeAdditions Treatment -11.678 6.809 -1.715
sitettToeRemoval Control -12.351 6.510 -1.897
sitettToeRemoval Treatment -13.168 6.510 -2.023
--
R. Gus Jespersen
PhD Candidate
College of Forest Resources
University of Washington
Box 352100
Seattle, WA 98195-2100
(206) 543-5777
jesper at u.washington.edu
More information about the R-sig-mixed-models
mailing list