[R-sig-ME] mcmcglmm and parallel chains
Dale Steele
dale.w.steele at gmail.com
Thu Jun 14 23:51:24 CEST 2012
Just now hearing from Andrew Redd about his 'harvestr' package which
seems tailor made for this problem...
https://github.com/halpo/harvestr
On Wed, Jun 13, 2012 at 3:16 AM, Ben Bolker <bbolker at gmail.com> wrote:
> Hans Ekbrand <hans at ...> writes:
>
>>
>> I am learning mcmcglmm in order to use it on a beowulf cluster.
>>
>> In https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q3/006558.html
>>
>> Jarrod Hadfield writes:
>>
>> "You can merge MCMC chains from multiple runs, although you should make
>> sure you start them from different initial values"
>>
>> Is it sufficient to provide differents random seeds for each run,
>> or does this refer to the start parameter of mcmcglmm()?
>>
>> start: optional list having 4 possible elements: ‘R’ (R-structure)
>> ‘G’ (G-structure) and ‘liab’ (latent variables or
>> liabilities) should contain the starting values where ‘G’
>> itself is also a list with as many elements as random effect
>> components. The fourth element ‘QUASI’ should be logical: if
>> ‘TRUE’ starting latent variables are obtained heuristically,
>> if ‘FALSE’ then they are sampled from a Z-distribution
>>
>
> It depends a bit on what your computational issues are. It would
> probably be _better_ to use multiple starting points, but if you are
> sure you have no problem with burn-in then you can start all the chains
> at the same points and rely on the different random-number seeds to allow
> the chains to explore parameter space independently. (Using multiple
> starting points would would also allow you to use the Gelman-Rubin
> diagnostic to assess convergence.)
> I would do some experiments with MCMCglmm to ensure that you know
> how random seeds work with it (i.e. that you get identical answers
> if and only if random seeds are set the same). You may also want/need
> to look at some of the comments in the high performance task view about
> random number streams for parallel computation.
>
>
> to look into
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list