[R-sig-ME] How to convert the formula from LME4 to NLME?
Gang Chen
gangchen at mail.nih.gov
Wed May 9 23:31:07 CEST 2012
Here is my suggestion:
> summary(fm9 <- lmer(Reaction ~ 1 + Days + (1|Subject) + (0+Days|Subject), sleepstudy, REML = 0))Linear mixed model fit by maximum likelihood
Formula: Reaction ~ 1 + Days + (1 | Subject) + (0 + Days | Subject)
Data: sleepstudy
AIC BIC logLik deviance REMLdev
1762 1778 -876 1752 1744
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 584.250 24.1713
Subject Days 33.633 5.7994
Residual 653.116 25.5561
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 251.405 6.708 37.48
Days 10.467 1.519 6.89
Correlation of Fixed Effects:
(Intr)
Days -0.194
> summary(fm10 <- lme(Reaction ~ 1 + Days, random=list(Subject=pdBlocked(list(pdIdent(~1), pdSymm(~0+Days)))), sleepstudy, method='ML'))
Linear mixed-effects model fit by maximum likelihood
Data: sleepstudy
AIC BIC logLik
1762.003 1777.968 -876.0016
Random effects:
Composite Structure: Blocked
Block 1: (Intercept)
Formula: ~1 | Subject
(Intercept)
StdDev: 24.17127
Block 2: Days
Formula: ~0 + Days | Subject
Days Residual
StdDev: 5.799409 25.55613
Fixed effects: Reaction ~ 1 + Days
Value Std.Error DF t-value p-value
(Intercept) 251.40510 6.745252 161 37.27142 0
Days 10.46729 1.527826 161 6.85110 0
Correlation:
(Intr)
Days -0.194
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.9535402 -0.4672676 0.0239343 0.4625157 5.1883448
Number of Observations: 180
Number of Groups: 18
On Wed, May 9, 2012 at 5:01 PM, Michael <comtech.usa at gmail.com> wrote:
> How to convert the formula from LME4 to NLME?
>
> Hi all,
>
> We have the following fomular in LME4:
>
> > (fm9 <- lmer(Reaction ~ 1 + Days + (1|Subject) + (0+Days|Subject),
> + sleepstudy, REML = 0))
>
> How to do the same in NLME?
>
> Thanks a lot!
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list