[R-sig-ME] modelling proportions, with aggregated data, and the new/old lme4
Adam Smith
raptorbio at hotmail.com
Wed Mar 21 17:06:40 CET 2012
Not sure what I'm missing here, but I'm not finding the offset Poisson and binomial to be equal with my dataset.
> sessionInfo()
R version 2.14.1 (2011-12-22)
Platform: x86_64-pc-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United
States.1252 LC_MONETARY=English_United States.1252
LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats4 splines tcltk stats graphics grDevices utils datasets methods base
other attached packages:
[1] lme4_0.999375-42 bbmle_1.0.4.1 numDeriv_2010.11-1
R2admb_0.7.5 Hmisc_3.9-1 survival_2.36-10
NCStats_0.2-7 sciplot_1.0-9
[9] mgcv_1.7-13 Matrix_1.0-3 lattice_0.20-0
MASS_7.3-16 AED_1.0 circular_0.4-3
boot_1.3-4 plotrix_3.3-3
loaded via a namespace (and not attached):
[1] car_2.0-12 cluster_1.14.1 gamm4_0.1-5
gdata_2.8.2 glmmADMB_0.7.2.5 gplots_2.10.1 grid_2.14.1
gtools_2.6.2 multcomp_1.2-9
[10] nlme_3.1-103 TeachingDemos_2.7 tools_2.14.1
> #
> # Compare offset Poisson with binomial
> invlogit<-function(x) exp(x)/(1+exp(x))
> test <- read.csv("http://dl.dropbox.com/u/23278690/test.csv", header=T)
> b.glm <- glm(cbind(success,total) ~ (a+b+c)^2 - 1, family="binomial", data=test)
> p.glm <- glm(success ~ (a+b+c)^2 - 1 + offset(log(total)), family="poisson", data=test)
> #
> exp(coef(p.glm))
a b c a:b a:c b:c
0.03225038 0.15195288 1.40174126 3.48192066 1.01892662 0.97212475
> #
> inv.logit(coef(b.glm))
a b c a:b a:c b:c
0.03158208 0.13227007 0.58381656 0.77643718 0.50446378 0.49263445
> #
> all.equal(exp(coef(p.glm)), invlogit(coef(b.glm)))
[1] "Mean relative difference: 0.6428341"
Could it be related to the number of zeros?
Adam Smith
Dept. Natural Resources Science
University of Rhode Island
More information about the R-sig-mixed-models
mailing list