[R-sig-ME] Interpretation of nonlinear mixed-effects modeling results
Gang Chen
gangchen6 at gmail.com
Mon Feb 13 19:41:43 CET 2012
I'm fitting a nonlinear mixed-effects model to some data with two
groups (controls and patients) with something like
fm <- nlme(response ~ myFunc(time, a, b), data=myData, fixed = a + b
~ group, start=...)
myFunc is a nonlinear function defined with two parameters a and b.
I'm very confused with the results between summary(fm) and anova(fm):
> summary(fm)
...
Fixed effects: a + b ~ group
Value Std.Error DF t-value p-value
a.(Intercept) 29.905889 10.532769 2196 2.839319 0.0046
a.groupPat 6.437218 16.045223 2196 0.401192 0.6883
b.(Intercept) 0.290943 0.072544 2196 4.010559 0.0001
b.groupPat -0.138361 0.077339 2196 -1.789010 0.0738
...
> anova(fm)
numDF denDF F-value p-value
a.(Intercept) 1 2196 497.8594 <.0001
a.group 1 2196 12.6109 0.0004
b.(Intercept) 1 2196 45.2787 <.0001
b.group 1 2196 3.2006 0.0738
If I understand it correctly, the last row in the fixed effects table
of summary(fm) is the difference in parameter b between the two
groups, and the t-statistic (and p-value) matches the F-statistic (and
p-value) from the last row of anova(fm): (-1.789010)^2 = 3.2006.
However, I'm totally at a loss for the other three rows in the two
tables? For example, I thought a.groupPat (2nd row) in the summary(fm)
table is the amount in parameter a in Patient group that is more than
parameter a in the Control group (1st row); but this interpretation is
not consistent with what is shown in the 2nd row of anova(fm) table.
What am I missing here?
Thanks,
Gang
More information about the R-sig-mixed-models
mailing list