[R-sig-ME] level 1 variance-covariance structure
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Apr 12 13:25:56 CEST 2011
Dear Sebastian,
You don't need to create dummy variables your selve.
You can write m2a <- lme(attit ~ 1 + age13 , data=data, random= ~ 0 + ind1+ ind2+ ind3+ ind4+ ind5 | id, method="REML") as
m2a <- lme(attit ~ 1 + age13 , data=data, random= ~ 0 + factor(ind) | id, method="REML")
Or if ind is an indicator for age13:
m2a <- lme(attit ~ 1 + age13 , data=data, random= ~ 0 + factor(age13) | id, method="REML")
Have a look at lmeControl() to increase the number of iterations.
Best regards,
Thierry
----------------------------------------------------------------------------
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org
> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens
> Sebastián Daza
> Verzonden: maandag 11 april 2011 18:44
> Aan: R-SIG-Mixed-Models at r-project.org
> Onderwerp: [R-sig-ME] level 1 variance-covariance structure
>
> Hi everyone,
> I am trying to reproduce some results models from HLM (HMLM)
> to contrast different specifications of level 1
> variance-covariance, but I get convergence errors. I would
> like to know if there are any problems with my model specification...
>
>
> # database structure
>
> head(data[,c(1,2,6, 9:13,17)])
> id attit age13 ind1 ind2 ind3 ind4 ind5 ind
> 1 3 0.11 -2 1 0 0 0 0 1
> 2 3 0.20 -1 0 1 0 0 0 2
> 3 3 0.00 0 0 0 1 0 0 3
> 4 3 0.00 1 0 0 0 1 0 4
> 5 3 0.11 2 0 0 0 0 1 5
> 6 8 0.29 -2 1 0 0 0 0 1
>
> # attit is a deviant measure and ind variables indicate
> different waves # following some examples of snijders and
> bosker's book, I get the unrestricted model:
>
> > m2a <- lme(attit ~ 1 + age13 , data=data, random= ~ 0 +
> ind1+ ind2+
> ind3+ ind4+ ind5 | id, method="REML")
>
> > summary(m2a)
> Linear mixed-effects model fit by REML
> Data: data
> AIC BIC logLik
> -326.2096 -236.5348 181.1048
>
> Random effects:
> Formula: ~0 + ind1 + ind2 + ind3 + ind4 + ind5 | id
> Structure: General positive-definite, Log-Cholesky parametrization
> StdDev Corr
> ind1 0.17219431 ind1 ind2 ind3 ind4
> ind2 0.19789253 0.493
> ind3 0.25942942 0.425 0.544
> ind4 0.28354459 0.442 0.442 0.723
> ind5 0.29097082 0.498 0.474 0.639 0.808
> Residual 0.07457025
>
> Fixed effects: attit ~ 1 + age13
> Value Std.Error DF t-value p-value
> (Intercept) 0.3210558 0.012832840 839 25.01829 0
> age13 0.0593529 0.004716984 839 12.58282 0
> Correlation:
> (Intr)
> age13 0.504
>
> Standardized Within-Group Residuals:
> Min Q1 Med Q3 Max
> -1.46371871 -0.27170442 -0.04080686 0.26239553 1.69883910
>
> Number of Observations: 1079
> Number of Groups: 239
>
> # variance-covariance matrix
>
> > extract.lme.cov2(m2a,data)$V[[6]]
> 25 26 27 28 29
> 25 0.03521160 0.01681647 0.01899029 0.02159300 0.02494013
> 26 0.01681647 0.04472218 0.02793174 0.02481343 0.02727012
> 27 0.01899029 0.02793174 0.07286434 0.05318967 0.04823107
> 28 0.02159300 0.02481343 0.05318967 0.08595826 0.06667139
> 29 0.02494013 0.02727012 0.04823107 0.06667139 0.09022474
>
> # I get the same results than unrestricted model in HLM
>
> # When I try to get the same unrestricted model using "corStruc"
> commands in lme, I get a convergence problem. Am I
> reproducing the model m2a?
>
> > m2b <- lme(attit ~ 1 + age13 , data=data, random= ~ age13
> | id, correlation = corSymm(, form = ~ ind | id)) Error in
> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
> nlminb problem, convergence error code = 1
> message = iteration limit reached without convergence (9)
>
> # When I try to get an autoregressive model, I get again a
> convergence problem.
>
> > m3a <- lme(attit ~ 1 + age13 , data=data, random= ~ age13
> | id, correlation = corAR1(, form = ~ ind | id)) Error in
> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
> nlminb problem, convergence error code = 1
> message = iteration limit reached without convergence (9)
>
> Does anyone know how I can solve this?
> Thank you in advance.
>
> --
> Sebastián Daza
> sebastian.daza at gmail.com
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list